Fast Computation by Population Protocols
With a Leader

Dana Angluin (Yale)
James Aspnes (Yale)
David Eisenstat (Rochester/Princeton)

September 18th, 2006

An interaction between two neighbors updates the state of both agents according to a joint transition function.

Interactions are asymmetric: one agent is the initiator and one the responder.

An interaction between two neighbors updates the state of both agents according to a joint transition function.

Interactions are asymmetric: one agent is the initiator and one the responder.

An interaction between two neighbors updates the state of both agents according to a joint transition function.

Interactions are asymmetric: one agent is the initiator and one the responder.

An interaction between two neighbors updates the state of both agents according to a joint transition function.

Interactions are asymmetric: one agent is the initiator and one the responder.

An interaction between two neighbors updates the state of both agents according to a joint transition function.

Interactions are asymmetric: one agent is the initiator and one the responder.

An interaction between two neighbors updates the state of both agents according to a joint transition function.

Interactions are asymmetric: one agent is the initiator and one the responder.

An interaction between two neighbors updates the state of both agents according to a joint transition function.

Interactions are asymmetric: one agent is the initiator and one the responder.
A **population protocol** (Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC 2004) consists of a collection of **finite-state agents** organized in an **interaction graph**.

An **interaction** between two neighbors updates the state of both agents according to a joint **transition function**.

Interactions are **asymmetric**: one agent is the **initiator** and one the **responder**.

Leader Election

- \(\bullet, \bullet \rightarrow \bullet, \bullet \)
- \(\bullet \rightarrow \bullet, \bullet \)
- \(\bullet \rightarrow \bullet, \bullet \)
- \(\bullet, \bullet \rightarrow \bullet, \bullet \)

![Interaction Graph]

DISC 2006, September 18th, 2006

Population Protocols With a Leader

An interaction between two neighbors updates the state of both agents according to a joint transition function.

Interactions are asymmetric: one agent is the initiator and one the responder.

Leader Election

- \(\bullet \), \(\bullet \) → \(\bullet, \bullet \)
- \(\bullet \), \(\bullet \) → \(\bullet, \bullet \)
- \(\bullet \), \(\bullet \) → \(\bullet, \bullet \)
- \(\bullet \), \(\bullet \) → \(\bullet, \bullet \)

An interaction between two neighbors updates the state of both agents according to a joint transition function.

Interactions are asymmetric: one agent is the initiator and one the responder.

An interaction between two neighbors updates the state of both agents according to a joint transition function.

Interactions are asymmetric: one agent is the initiator and one the responder.

Leader Election

- $\bullet = $ leader
- $\bullet = $ non-leader

\[\text{DISC 2006, September 18th, 2006 Population Protocols With a Leader}\]
Why do we care?

- Original official motivation: Sensor networks with really dumb sensors.
- Revised official motivation: Chemical (especially biochemical) systems.
- Unofficial motivation: Cool mathematical structures that might actually be useful.
Stable computations

- **Input map** converts inputs (at each agent) to initial states.
- **Output map** extracts outputs from states.
- **Fairness condition** enforces that any reachable state is eventually reached.
- A **stable computation** converges to the same output at all agents.

Parity

In:
- \(0^*, 0^* \rightarrow 0, 0^*\)
- \(x \rightarrow x^* \rightarrow 1, 1^*\)
- \(1^*, 0^* \rightarrow 1, 1^*\)

Out:
- \(1^*, 1^* \rightarrow 0, 0^*\)
- \(x \rightarrow x \rightarrow x, y^* \rightarrow y^*, y\)
- \(x^*, y \rightarrow x, x^*\)

[Diagram of Parity]
Stable computations

- **Input map** converts inputs (at each agent) to initial states.

- **Output map** extracts outputs from states.

- **Fairness condition** enforces that any reachable state is eventually reached.

- A **stable computation** converges to the same output at all agents.

Parity

- **In:**
 - $0^*, 0^* \rightarrow 0, 0^*$
 - $0^*, 1^* \rightarrow 1, 1^*$
 - $1^*, 0^* \rightarrow 1, 1^*$

- **Out:**
 - $1^*, 1^* \rightarrow 0, 0^*$
 - $x \rightarrow x$
 - $x, y^* \rightarrow y^*, y$
 - $x^* \rightarrow x$
 - $x^*, y \rightarrow x, x^*$

```
0^* \rightarrow 1^*
1^* \rightarrow 0^*
0^*
1^*
```
Stable computations

- **Input map** converts inputs (at each agent) to initial states.
- **Output map** extracts outputs from states.
- **Fairness condition** enforces that any reachable state is eventually reached.
- A **stable computation** converges to the same output at all agents.

Parity

<table>
<thead>
<tr>
<th>In:</th>
<th>Out:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0^, 0^ \rightarrow 0, 0^*$</td>
<td>$1^, 0^ \rightarrow 1, 1^*$</td>
</tr>
<tr>
<td>$x \rightarrow x^*$</td>
<td>$1^, 1^ \rightarrow 0, 0^*$</td>
</tr>
<tr>
<td>$x^* \rightarrow x$</td>
<td>$x, y^* \rightarrow y^*, y$</td>
</tr>
<tr>
<td>$x^, y \rightarrow x, x^$</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

```
1 1* 0*
  \
  \
1*
```
Stable computations

- **Input map** converts inputs (at each agent) to initial states.
- **Output map** extracts outputs from states.
- **Fairness condition** enforces that any reachable state is eventually reached.
- A **stable computation** converges to the same output at all agents.

Parity

In:
- $0^*, 0^* \rightarrow 0, 0^*$
- $x \rightarrow x^*$
 - $0^*, 1^* \rightarrow 1, 1^*$
 - $1^*, 0^* \rightarrow 1, 1^*$
Out:
- $1^*, 1^* \rightarrow 0, 0^*$
- $x \rightarrow x$
 - $x, y^* \rightarrow y^*, y$
- $x^* \rightarrow x$
 - $x^*, y \rightarrow x, x^*$

Diagram:

```
1
\rightarrow 1*
\rightarrow 0*
```

DISC 2006, September 18th, 2006
Stable computations

- **Input map** converts inputs (at each agent) to initial states.

- **Output map** extracts outputs from states.

- **Fairness condition** enforces that any reachable state is eventually reached.

- A **stable computation** converges to the same output at all agents.

Parity

\[
\begin{align*}
\text{In:} & & 0^*, 0^* \rightarrow 0, 0^* \\
& & 0^*, 1^* \rightarrow 1, 1^* \\
& & 1^*, 0^* \rightarrow 1, 1^* \\
\text{Out:} & & 1^*, 1^* \rightarrow 0, 0^* \\
& & x \rightarrow x \quad x, y^* \rightarrow y^*, y \\
& & x^* \rightarrow x \quad x^*, y \rightarrow x, x^*
\end{align*}
\]
Stable computations

- **Input map** converts inputs (at each agent) to initial states.
- **Output map** extracts outputs from states.
- **Fairness condition** enforces that any reachable state is eventually reached.
- **A stable computation** converges to the same output at all agents.

Parity

In:
- \(0^*, 0^* \rightarrow 0, 0^*\)
- \(x \rightarrow x^* \rightarrow 0^*, 1^* \rightarrow 1, 1^*\)
- \(1^*, 0^* \rightarrow 1, 1^*\)

Out:
- \(1^*, 1^* \rightarrow 0, 0^*\)
- \(x \rightarrow x, x^* \rightarrow x, x^* \rightarrow x, y^* \rightarrow y^*, y\)
- \(x^*, y \rightarrow x, x^*\)
Stable computations

- **Input map** converts inputs (at each agent) to initial states.
- **Output map** extracts outputs from states.
- **Fairness condition** enforces that any reachable state is eventually reached.
- A **stable computation** converges to the same output at all agents.

Parity

- **In:**
 - \(0^*, 0^* \rightarrow 0, 0^*\)
 - \(x \rightarrow x^* \rightarrow 0^*, 1^* \rightarrow 1, 1^*\)
 - \(1^*, 0^* \rightarrow 1, 1^*\)
- **Out:**
 - \(1^*, 1^* \rightarrow 0, 0^*\)
 - \(x \rightarrow x \rightarrow x^*, y^* \rightarrow y^*, y\)
 - \(x^*, y \rightarrow x, x^*\)
Input map converts inputs (at each agent) to initial states.

Output map extracts outputs from states.

Fairness condition enforces that any reachable state is eventually reached.

A stable computation converges to the same output at all agents.

Parity

<table>
<thead>
<tr>
<th>In:</th>
<th>Out:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0*, 0* → 0, 0*</td>
<td>1*, 0* → 1, 1*</td>
</tr>
<tr>
<td>x → x*</td>
<td>1*, 1* → 0, 0*</td>
</tr>
<tr>
<td>x* → x</td>
<td>x*, y* → y*, y</td>
</tr>
<tr>
<td></td>
<td>x*, y → x, x*</td>
</tr>
</tbody>
</table>

Parity Diagram:

```
1 ---- 1*
     /     /  \
    1* 1* 1*
```

DISC 2006, September 18th, 2006
Stable computations

- **Input map** converts inputs (at each agent) to initial states.
- **Output map** extracts outputs from states.
- **Fairness condition** enforces that any reachable state is eventually reached.
- A **stable computation** converges to the same output at all agents.

Parity

In:
- \(0^*, 0^* \rightarrow 0, 0^*\)
- \(x \rightarrow x^*\)
- \(0^*, 1^* \rightarrow 1, 1^*\)
- \(1^*, 0^* \rightarrow 1, 1^*\)

Out:
- \(1^*, 1^* \rightarrow 0, 0^*\)
- \(x \rightarrow x\)
- \(x, y^* \rightarrow y^*, y\)
- \(x^*, y \rightarrow x, x^*\)
Stable computations

- **Input map** converts inputs (at each agent) to initial states.
- **Output map** extracts outputs from states.
- **Fairness condition** enforces that any reachable state is eventually reached.
- A **stable computation** converges to the same output at all agents.

Parity

- **In:**
 - $0^*, 0^* \rightarrow 0, 0^*$
 - $x \rightarrow x^*$
 - $0^*, 1^* \rightarrow 1, 1^*$
 - $1^*, 0^* \rightarrow 1, 1^*$

- **Out:**
 - $1^*, 1^* \rightarrow 0, 0^*$
 - $x \rightarrow x$
 - $x, y^* \rightarrow y^*, y$
 - $x^*, y \rightarrow x, x^*$

![Parity Diagram]
Stable computations

- **Input map** converts inputs (at each agent) to initial states.
- **Output map** extracts outputs from states.
- **Fairness condition** enforces that any reachable state is eventually reached.
- A **stable computation** converges to the same output at all agents.

Parity

In:
- $0^*, 0^* \rightarrow 0, 0^*$
- $x \rightarrow x^*$
 - $0^*, 1^* \rightarrow 1, 1^*$
 - $1^*, 0^* \rightarrow 1, 1^*$

Out:
- $1^*, 1^* \rightarrow 0, 0^*$
- $x \rightarrow x$
 - $x, y^* \rightarrow y^*, y$
- $x^* \rightarrow x$
 - $x^*, y \rightarrow x, x^*$

![Parity Diagram]
Stable computations

- **Input map** converts inputs (at each agent) to initial states.
- **Output map** extracts outputs from states.
- **Fairness condition** enforces that any reachable state is eventually reached.
- A **stable computation** converges to the same output at all agents.

Parity

<table>
<thead>
<tr>
<th>In:</th>
<th>0*, 0* → 0, 0*</th>
</tr>
</thead>
<tbody>
<tr>
<td>x → x*</td>
<td>0*, 1* → 1, 1*</td>
</tr>
<tr>
<td></td>
<td>1*, 0* → 1, 1*</td>
</tr>
<tr>
<td>Out:</td>
<td>1*, 1* → 0, 0*</td>
</tr>
<tr>
<td>x → x</td>
<td>x, y* → y*, y</td>
</tr>
<tr>
<td>x* → x</td>
<td>x*, y → x, x*</td>
</tr>
</tbody>
</table>

DISC 2006, September 18th, 2006
Stable computations

- **Input map** converts inputs (at each agent) to initial states.
- **Output map** extracts outputs from states.
- **Fairness condition** enforces that any reachable state is eventually reached.
- A **stable computation** converges to the same output at all agents.

Parity

In:
- $0^*, 0^* \rightarrow 0, 0^*$
- $x \rightarrow x^*$
 - $0^*, 1^* \rightarrow 1, 1^*$
 - $1^*, 0^* \rightarrow 1, 1^*$

Out:
- $1^*, 1^* \rightarrow 0, 0^*$
- $x \rightarrow x$
 - $x, y^* \rightarrow y^*, y$
- $x^* \rightarrow x$
 - $x^*, y \rightarrow x, x^*$
Stable computations

- **Input map** converts inputs (at each agent) to initial states.
- **Output map** extracts outputs from states.
- **Fairness condition** enforces that any reachable state is eventually reached.
- A **stable computation** converges to the same output at all agents.

Parity

- **In:**
 - \(0^*, 0^* \rightarrow 0, 0^*\)
 - \(x \rightarrow x^* \rightarrow 0^*, 1^* \rightarrow 1, 1^*\)
 - \(1^*, 0^* \rightarrow 1, 1^*\)

- **Out:**
 - \(1^*, 1^* \rightarrow 0, 0^*\)
 - \(x \rightarrow x \rightarrow x, y^* \rightarrow y^*, y\)
 - \(x^*, y \rightarrow x, x^*\)
Stable computations

- **Input map** converts inputs (at each agent) to initial states.
- **Output map** extracts outputs from states.
- **Fairness condition** enforces that any reachable state is eventually reached.
- A **stable computation** converges to the same output at all agents.

Parity

<table>
<thead>
<tr>
<th>In:</th>
<th>Out:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0*, 0* → 0, 0*</td>
<td>1*, 1* → 0, 0*</td>
</tr>
<tr>
<td>0*, 1* → 1, 1*</td>
<td>1*, 0* → 1, 1*</td>
</tr>
</tbody>
</table>

0* \rightarrow x
x \rightarrow x
x* \rightarrow x
x*, y \rightarrow x, x*

0* \rightarrow 0
0 \rightarrow 0
0 \rightarrow 0
Presburger predicates

- Trick: represent numbers by tokens scattered across the population.
- Population protocols on connected graphs can stably compute all of first-order Presburger arithmetic on counts of input tokens, including:
 - Addition.
 - Subtraction.
 - Multiplication by a constant k.
 - Remainder mod k.
 - $>$, $<$, and \equiv.
 - \land, \lor, \neg, $\forall x$, and $\exists x$, applied to above.
- Example: “Are there at least twice as many cold sensors as hot sensors?”
Presburger predicates (continued)

- Computable for fixed inputs (Angluin et al., PODC 2004)
- Computable if inputs converge after some finite time (Angluin, Aspnes, Chan, Fischer, Jiang, and Peralta, DCOSS 2005).
- Computable with one-way communication (Angluin, Aspnes, Eisenstat, Ruppert, OPODIS 2005).
- Computable if a small number of agents fail (Delporte-Gallet, Fauconnier, Guerraoui, Ruppert, DCOSS 2006).
- Nothing else is computable on a complete interaction graph, i.e. if any agent can interact with any other (Angluin, Aspnes, Eisenstat, PODC 2006).
 - Example: can’t compute “Is the number of cold sensors the square of the number of hot sensors?”
Question: If we have an exact characterization of what population protocols can do, aren’t we done?
Hooray! No more population protocol papers!

- Question: If we have an exact characterization of what population protocols can do, aren’t we done?
- Answer: No.
Question: If we have an exact characterization of what population protocols can do, aren’t we done?

Answer: No.

- Bounded-degree interaction graph gives all of LINSPACE (Angluin et al., DCOSS 2005).
- Random scheduling in a complete graph gives all of LOGSPACE (Angluin et al., PODC 2004).
- These results involve very slow Turing machine simulations.
Hooray! No more population protocol papers!

- Question: If we have an exact characterization of what population protocols can do, aren’t we done?
- Answer: No.
 - Bounded-degree interaction graph gives all of LINSPACE (Angluin et al., DCOSS 2005).
 - Random scheduling in a complete graph gives all of LOGSPACE (Angluin et al., PODC 2004).
 - These results involve very slow Turing machine simulations.
- Today: Fast simulations of register machines, assuming random scheduling.
Randomized population protocols

- Assume next pair of agents to interact is chosen uniformly (i.e. with probability \(\frac{1}{N(N-1)} \)).

- This gives the **randomized population protocol** model from (Angluin et al., PODC 2004).

- It also is the uniform-rate case of the standard model for well-mixed chemical systems (e.g. (Gillespie 1977)).

- Expected **time** is obtained by dividing expected interactions by \(N \)—each agent interacts at a fixed rate regardless of size of the population.
A test-tube computer

- **Register values** (up to $O(N)$) are stored as tokens distributed across the population.
- A unique **leader agent** acts as the (finite-state) CPU.
- We want to support the usual operations of addition, subtraction, comparison, multiplication, division, etc.
- We want to do them all in polylogarithmic time ($O(N \log^{O(1)} N)$ interactions).
- We’ll accept a small ($O(N^{-\Theta(1)})$) probability of error.
Key fact: An epidemic starting from one infected agent spreads to all agents in $\Theta(\log N)$ time with high probability.

This gives us a broadcast primitive.
Instruction cycle

- Leader propagates a new opcode via epidemic.
- Followers carry out chosen operation:
 - $A \leftarrow 0$: Erase your A token upon receipt of opcode.
 - $A \leftarrow A + B$: Make a new A token for each B token.
 - $A \div 0$: Start a counter-epidemic if you have an A.
 - $A > B$, $A \leftarrow A - B$, etc.: more complicated.
- Leader collects response (if any) from counter-epidemic, updates its state, and starts a new cycle.
Instruction cycle

- Leader propagates a new opcode via epidemic.
- Followers carry out chosen operation:
 - $A \leftarrow 0$: Erase your A token upon receipt of opcode.
 - $A \leftarrow A + B$: Make a new A token for each B token.
 - $A \overset{?}{=} 0$: Start a counter-epidemic if you have an A.
 - $A > B$, $A \leftarrow A - B$, etc.: more complicated.
- Leader collects response (if any) from counter-epidemic, updates its state, and starts a new cycle.
Instruction cycle

- Leader propagates a new opcode via epidemic.
- Followers carry out chosen operation:
 - $A \leftarrow 0$: Erase your A token upon receipt of opcode.
 - $A \leftarrow A + B$: Make a new A token for each B token.
 - $A \begin{array}{c} \Rightarrow \end{array} 0$: Start a counter-epidemic if you have an A.
 - $A > B$, $A \leftarrow A - B$, etc.: more complicated.

- Leader collects response (if any) from counter-epidemic, updates its state, and starts a new cycle.
Each agent is in a **phase** in the range 0 to \(m - 1 \).

An initiator in a later phase \(\mod m \) recruits agents in earlier phases.

The leader advances if it sees an initiator in its own phase.

Result: Leader goes all the way around every \(\Theta(\log n) \) time units.
Phase clock: simulation results

Phase clock with $N = 1000$ and $m = 8$.
Phase clock: simulation results

Zoomed view of phase 0 and phase 4.
Why it works

- Phases i and higher act as an epidemic wiping out phases $i - 1$ and lower.
- This epidemic finishes in $a \log N$ time (with high probability).
- When the leader advances, it takes at least $b \log N$ time (w.h.p.) to generate at least N^ϵ agents in the same phase \Rightarrow leader advances before $b \log N$ time (a **short phase**) with probability $N^{O(\epsilon) - 1}$.
- For sufficiently large m, chance of too many short phases in a row is $O(N^{-c})$.
- **Amazing fact:** m depends on c but not N.
Other operations

- Operations like assignment and addition that don’t require tokens to interact can be done in one instruction cycle ($O(\log N)$ time).

- Operations that do require interaction may take longer.
 - Naive $A \geq B$ algorithm: Have A and B tokens cancel until only one kind is left.
 - This takes $\Omega(N^2)$ interactions if there are few A’s and B’s.

- How can we do cancellation faster?
Cancellation by amplification

- Cancellation is fast if there are many tokens to cancel.
- Solution: Alternate between canceling and doubling.
- Invariant \(|A_k - B_k| = 2^k |A_0 - B_0|\) after \(k\) rounds.
- If no winner in \(2 \log N\) rounds, \(A_0 = B_0\).
- This gives \(?\) \(A < B\) in \(O(\log^2 N)\) time.
Subtraction and division by binary search

- To compute $C \leftarrow A - B$, do binary search for C such that $A = B + C$.
- This takes $O(\log N)$ rounds of binary search at $O(\log^2 N)$ time each $\Rightarrow O(\log^3 N)$ time.
- Similar approach for division gives $O(\log^4 N)$ time. (This is our most expensive operation.)
Results

For a randomized population protocol with a unique initial leader, we have:

- **Register machine simulation:**
 - $\Theta(\log N)$-bit registers.
 - $O(\log^4 N)$ expected time per operation.
 - $O(N^{-c})$ probability of failure.

- **Presburger predicate computation:**
 - $O(\log^4 N)$ expected time. (Cf. $O(N)$ for previous protocols.)
 - **Zero** probability of failure.
 - **Trick:** Combine fast fallible protocol with slow robust one.
What’s left?

- What happens if we don’t have a leader to start with?
 - Election by fratricide takes $\Theta(N^2)$ interactions.
 - Phase clock is irretrievably corrupted during election process.
- Can we elect a leader faster?
- Can we build a more robust phase clock?
- Can we cut down the polylog overhead?

We have some promising simulation results, but better analytical tools may be needed.