Time- and Space-Efficient Randomized Consensus

James Aspnes
School of Computer Science
Carnegie-Mellon University

Pittsburgh, PA 15213

February 10, 1992

Abstract

A protocol is presented which solves the randomized consensus problem[9] for shared memory.
The protocol uses a total of O(p? +n) worst-case expected increment, decrement and read oper-
ations on a set of three shared O(logn)-bit counters, where p is the number of active processors
and n 1s the total number of processors. It requires less space than previous polynomial-time
consensus protocols[6, 7], and is faster when not all of the processors participate in the protocol.
A modified version of the protocol yields a weak shared coin whose bias is guaranteed to be in
the range 1/2 & ¢ regardless of scheduler behavior, and which is the first such protocol for the

shared-memory model to guarantee that all processors agree on the outcome of the coin.

1. Introduction

Consensus is a decision problem in which n processors, each starting with a value (0 or 1) not
known to the others, must collectively agree on a single value. A consensus protocol is a distributed

protocol for solving consensus. It is correct if it meets the following conditions:

e Consistency. All processors decide on the same value.

e Termination. Every processor decides on some value in finite expected time.

e Validity. If every processor starts with the same value, every processor decides on that value.

We are interested in consensus protocols in which the processors communicate through some
shared concurrent data structure (for example, a collection of single-writer atomic registers). We
would like our protocols to be wait-free: every processor terminates after a finite number of its own
steps, regardless of other processors’ halting failures or relative speeds[15]. Wait-free consensus
is fundamental to synchronization without mutual exclusion. It can be used to obtain wait-free
implementations of arbitrary abstract data types with atomic operations[16, 19, 15]. Consensus
is also complete for distributed decision tasks[10] in the sense that it can be used to solve all such

tasks that have a wait-free solution.

Consensus is often viewed as a game played between a set of processors and an adversarial
scheduler, where the powers available to the scheduler are chosen to simulate the conditions under
which the protocol is required to operate. It has been known for some time that the ability of
the scheduler to stop even a single processor is sufficient to prevent consensus from being solved

by a deterministic algorithm using only atomic registers[17, 14, 11, 9, 15]. Chor, Israeli, and Li[9]

2

showed that it is possible to solve consensus using globally-visible atomic coin flips as primitive
actions. Since then a number of protocols have been put forward[l, 6, 7] which achieve consensus
with only local coin-flip operations. These protocols work even against an adversary which has
complete knowledge of the processors’ programming and internal states, and total control over the

scheduling of reads and writes.

The protocol of Aspnes and Herlihy[6] is of particular interest because it is the first such algo-
rithm which runs in polynomial expected time. Unfortunately it makes extensive use of unbounded
registers, a defect that is corrected by Attiya, Dolev, and Shavit[7], who describe the first known

protocol that runs in both polynomial time and bounded space.

These protocols work on the same basic principle: the processors repeatedly execute a weak
shared coin protocol until all are in agreement. The weak shared coin abstraction has the prop-
erty that all processors that participate in it agree on its outcome with high probability, and the
scheduler has only limited control over what that outcome will be. The Aspnes and Herlihy weak
shared coin protocol works by having the processors collectively move a counter through a random
walk, each repeatedly flipping a local coin to decide whether to move it down or up. If a processor
notices that the counter has moved a predesignated distance from the origin, it returns with a
value determined by the sign of the counter. The key to this protocol is that the scheduler’s control
is in effect limited to “withholding” local coin flips by stopping processors before they can write
the local flips’ results. Since the effect of any small number of local coin flips on the outcome of
the protocol can be made arbitrarily small, the scheduler’s power over the outcome can be made

arbitrarily weak.

These weak shared coin protocols, however, are not robust: it is possible for the scheduler to

arrange that some processor decides 1 and then have others decide 0 with nonzero probability.
Thus they cannot be used by themselves to solve consensus— instead, it is necessary to provide
space for many successive shared coins and a round-based superstructure for detecting agreement
and invalidating the outcome of older shared coins. The present work eliminates the need for
multiple rounds by using a robust weak shared coin which guarantees that all processors agree on
the outcome of the flip. Consensus is handled as a degenerate case of the weak shared coin with
a preamble attached to ensure validity. The result is a simpler consensus protocol which uses less

space, less time, and is more amenable to optimization than its predecessors.

The contributions of the paper are two-fold. First, it describes a weak shared coin protocol which
uses both bounded space and is robust in the sense of guaranteeing agreement on its outcome, which
may have applications as a source of semi-random bits[21]. Second, it describes the first polynomial-
time consensus protocol whose running time depends primarily on the number of active processors,
rather than the total number of processors. Thus the protocol is likely to be of use in situations
where typically only a few of many processors may participate, such as when implementing a shared

abstract data type that only a fraction of the processors in the system might access concurrently.

1.1. Model

We use the probabilistic 1/0 automaton model[6], a probabilistic extension of the I/O automaton
model[18]. Details of the model are omitted here. Informally, the system is assumed to consist
of n processors, each of which can execute as a step either a single operation of some shared
primitive object (such as an atomic register or a counter with atomic increment, decrement, and

read operations) or a local coin flip. The sequencing of the processors’ actions is controlled by a

scheduler, a function which selects a processor to run for each possible state of the system. Implicit
in the definition of the scheduler are its ability to exploit total knowledge of the system’s state
(including the internal state of the processors) and its inability to predict the outcome of future

local coin flips.

It is not clear how best to measure the time performance of a wait-free algorithm. Previous work
on wait-free consensus has considered only the total number of primitive operations used, without
regard to how they are distributed among the processors or when they occur, an approach that is
adopted in this paper. The primary virtues of this measure are both its simplicity and the fact that
it adds no new timing assumptions to the wait-free model. Note that the total number of operations
does depend on the choice of primitive object; in most of the paper it will be assumed that an
increment, decrement, or read of an atomic counter counts as a single operation. Implementing
these operations using the weaker primitive of single-writer atomic registers as described in Section

4 will generally increase the stated running times by a factor of O(n?).

2. Probabilistic Preliminaries

Let us begin by stating a few simple lemmas about the behavior of random walks.

Lemma 1 Consider a symmetric random walk with step size 1 running between absorbing barriers

at a and b and starting at ©, a < x < b. Then:

1. The expected number of steps until one of the barriers is reached is given by (z — a)(b —),

2
and is always less than or equal to (“gb) .

2. The probability that the random walk hits b before a is $=5.

Lemma 2 Consider a symmetric random walk with step size 1 running between a reflecting barrier

at a and an absorbing barrier at b, starting at position z, a < x < b. Then the expected time until

b is reached is (z — (a — (b—a)))(b—z) < (b — a)?

Proof: This random walk can be obtained from the random walk with absorbing barriers at b and

a — (b — a) by the transformation z — a + |z — a|. 11

The following critical lemma describes a modified random walk that will be of great importance

in analyzing the weak shared coin and consensus protocols:

Lemma 3 Consider a symmetric random walk with absorbing barriers at a and b with the following
twist: a point ¢, a < ¢ < b is designated as the center of the random walk. Before each step, an
adversary chooses between moving randomly in either direction with probability 1/2, or moving away
from ¢ with probability 1. The adversary may also choose the starting position x of the random
walk to be anywhere in the range from a to b. No matter what choices the adversary makes, The

expected number of steps until one of the barriers is reached is less than or equal to (b — a)*

Proof: The game described can be thought of as a controlled Markov processin which the adversary
is trying to maximize the expected time. As it is played over a finite set of states, it is a standard
result of the theory of controlled Markov processors[13] that the maximum time can be achieved

with a simple strategy, one which chooses the same option from each state at all times.

Such a strategy can be specified by listing the points where the adversary chooses to force the
particle to move away from ¢. These points divide the random walk into distinct regions: the
region containing ¢ acts like a random walk with two absorbing barriers, and the others act like
random walks with one absorbing barrier (on the side away from ¢) and one reflecting barrier (on
the side toward ¢). Because each barrier can only be crossed away from ¢, once the particle leaves
a region it can never return. Now, suppose the particle starts in a region with width wy. After
at most w? steps on average (by Lemmas 2 and 1) it will pass into a new region with width wy;
after an additional w3 steps it will pass into a new region of width ws, and so on until either a or
b is reached. Since the regions all fit between @ and b, > w; < b — @, and thus (since each w; > 0)

Sw?<(b-a) 1

Though the bound in Lemma 3 is proved in terms of a very powerful adversary that is always
allowed to choose between a random move and a deterministic move at each step, the bound applies
equally well to a weaker adversary whose choices are more constrained, as the stronger adversary
could always choose to operate within the weaker adversary’s constraints. This technique, of
proving bounds for a strong adversary that then carry over to a weaker one, has great simplifying

power. It will be used extensively in the analysis of the shared coin and consensus protocols.

3. The Weak Shared Coin Protocol

A weak shared coin protocol with bias € is a distributed protocol in which n processors agree on a
value (0 or 1) with high probability. A weak shared coin protocol is correct if it meets the following

conditions:

Shared data:

counter ¢ with range [- K — 3n, K 4 3n], initialized to 0

procedure SharedCoin()
repeat
¢ := read(counter)
if ¢ < —(K + n) then decide 0
elseif ¢ > (K + n) then decide 1
elseif ¢ < — K then decrement(counter)
elseif ¢ > K then increment(counter)
else
if LocalCoin() = 0 then decrement(counter)
else increment(counter)

fi
fi

end end

Figure 1: Robust weak shared coin protocol.

e Termination. Every processor decides on some value in finite expected time.

¢ Bounded bias. The probability that at least one processor decides on a given value is at most

1/2 4+ € where 0 < e < 1/2.

A weak shared coin protocol is robust if, in addition, it satisfies the consistency condition:

e Consistency. All processors decide on the same value.

Figure 1 shows pseudocode for each processor’s behavior in the robust weak shared coin protocol.
The coin is constructed using an atomic counter, which supports atomic increment, decrement, and

read operations. In this section, these operations are assumed to take unit time.

A processor’s behavior in the protocol is represented in pictorial form in Figure 2. While a

processor reads values in the central range from — K to K (where K is a parameter of the protocol)

8

A
A\ 4

/ < i

/

-K-n +K+n

Figure 2: Pictorial representation of robust weak shared coin protocol.

it flips a local fair coin to decide whether to increment or decrement the counter. This part of
the protocol is essentially the same as the random-walk-based weak shared coin of Aspnes and
Herlihy[6]. What is new is the addition of a “slope” at either side of the random walk. On these
slopes, a processor does not move the counter randomly but instead always moves it away from
the center. When a processor reads a counter value in one of the “buckets” beyond the slopes, it

decides either 0 or 1 depending on the sign of the counter.

If the slopes are wide enough, once any processor has seen a value that causes it to decide, all
other processors will see values that cause them to push the counter toward the same decision.
This mechanism eliminates the possibility that delayed writes might move the counter out of the
decision range and allow the random walk (with small but non-negligible probability) to wander

over to the other side. This fact is stated formally in the following lemmas:

Lemma 4 If any processor reads a counter value v > (K 4 n), then all subsequent reads will return

values > K +1; in the symmetric case where v < —(K +n), all subsequent reads will be < —(K +1).

Proof: Suppose that a processor has read v > (K + n); then it immediately terminates leaving
n — 1 running processors. Thus the number d of processors that will execute a decrement before
their next read is at most n — 1. Let [= ¢ — d where ¢ is the value stored in the counter. Since
¢ > (K +n), it must be the case that [> K+ 1. Now consider the effect of the actions the scheduler
can take. If it allows a decrement to proceed, ¢ and d both drop by 1 and / remains constant. If it
allows an increment to occur, ¢ increases and [increases with it. If it allows a read, the value read
isc>1> K+ 1, and thus d is unaffected. In each case [remains at least K + 1, and the claim

follows since ¢ > [. The proof of the symmetric case is similar. il

The consistency property follows immediately from Lemma 4. A similar argument shows that

the counter will not overflow:

Lemma 5 The counter value never leaves the range [K — 3n, K 4+ 3n] in any execution of the weak

shared coin protocol.

Proof: Suppose that the counter reaches K 4 2n at some point. Then each processor will execute
at most one increment or decrement operation it reads the counter, at which point it will decide 1
and execute no additional operations. Thus the counter cannot exceed K +2n+n = K + 3n. The

full result follows by symmetry. il

Proving the termination and bounded bias properties of the shared coin requires some additional
machinery. Define the true position t of the random walk to be the value in the counter, ¢, plus
1 for each processor that will increment the counter before its next read, and minus 1 for each
processor that will decrement the counter before its next read. The following Lemma relates the
value read by a processor to the true position of the random walk:

10

A
A\ 4

Figure 3: The protocol as a controlled random walk.

Lemma 6 Let ¢ be a value read from the counter by some processor and t the true position of the

random walk in the state preceding the read. Then |c —t| < n —1.

Proof: There can be at most n — 1 processors with pending increments or decrements. il

Let us assume hereafter that the scheduler can cause a processor to read any value between
t—(n—1)and t4+(n—1); as such a scheduler is more powerful than any scheduler the protocol will
actually face, any “good” statement we can prove with the assumption will carry over a fortiori to
the situation without. The advantage of this simplifying assumption is that it allows us to forget
about the vagaries of the counter value. Instead we can treat the protocol as a controlled random

walk using the true position .

Consider the lower part of Figure 3 (the upper part simply repeats Figure 2 without the buckets.)

If the true position ¢ is in the central region between —K + (n — 1) and K — (n — 1), then Lemma

11

6 says that any processor which reads the counter will see a value between —K and K and move
t randomly. In the two immediately adjacent regions a processor will either read a value between
—K and K, and move ¢t randomly, or read a value that causes it to move ¢ away from 0. Finally,
any processor that reads a value in the outermost regions where |t| > K + (n — 1) will either make
a decision or move t away from 0. In all of these cases, the scheduler is never allowed to force that
true position toward 0; and if K is large relative to n much of the execution of the protocol will be
spent in the central region where the scheduler’s control is ineffective. These two properties of the

protocol are the basis of the proof of its termination and bounded bias, as shown below.

Lemma 7 The robust weak shared coin protocol evecutes an expected O((K + n)?*) total counter

operations when K > n.

Proof: If we consider the true position ¢, Lemma 6 implies that the scheduler can only force ¢
upift > K —(n—1)>1and down if t < —K + (n — 1) < —1. Furthermore if |{| ever exceeds
K+4n+(n—1), each processor will decide after its next read. Thus the movement of the true position
is a controlled random walk in the sense of Lemma 3 with center 0 and barriers at £(K 4 2n — 1).
The expected number of steps until a barrier is reached is at most 4(K + 2n — 1)? steps, which
will be followed by at most 2n operations as the processors each decide. Since each step takes a

constant number of counter operations the expected number of operations required is O((K +n)?).

The time bound of Lemma 7 shows that every processor terminates in finite expected time when

K > n. The bounded bias property is a consequence of the following lemma:

12

Lemma 8 Against any scheduler, the probability that the processors in the robust weak shared coin

K—(n-1) K+(n—-1)
o and —5

protocol will decide 1 is between
Proof: Suppose the scheduler is trying to maximize the probability of deciding 1. Under the
simplifying assumption it can force a decision of 1 as soon ast = K — (n— 1); however, if it allows ¢
toslip below — K —(n—1) the protocol will eventually decide 0. When —K —(n—1) <t < K—(n—1)
the scheduler may choose between moving ¢ randomly or forcing ¢ toward —K — (n — 1). Clearly,
forcing the counter toward —K —(n—1) can only increase the probability of deciding 0, so choosing
to move t randomly maximizes the problem of deciding 1. But if the scheduler makes this choice,
the movement of the true position becomes a simple random walk with absorbing barriers at
—K —(n—-1)and K — (n—1). By Lemma 1, the probability that ¢ reaches K — (n — 1) first is

—55—- The lower bound follows by symmetry. |

Combining the lemmas we obtain:

Theorem 9 When K > n, the protocol of Figure 1 implements a robust weak shared coin.

Proof: Consistency follows from Lemma 4, termination from Lemma 7, and bounded bias from

Lemma 8. 1

Lemma 8 allows K to be chosen to obtain arbitrarily small non-negative bias.! Let the bias of

the shared coin be % + €, then

n—1
2K

! A wait-free coin with zero bias is known to be impossible in the shared-memory model[6].

13

which gives

Combining this inequality with Lemma 7 gives a bound on the worst-case expected running time
for the protocol of O((n/€)?) total operations. This time is comparable to the worst-case expected
running times of the protocol’s non-robust ancestors. The protocol thus achieves robustness without

paying a significant cost in speed.

4. Implementing a Bounded Counter with Atomic Registers

The robust weak shared coin assumes the presence of a shared counter supporting atomic increment,
decrement, and read operations, with the restriction that no operation will be applied that will
move the counter out of some fixed range [—r,r]. In practice such a counter is not likely to be
available as a hardware primitive. Fortunately it is not difficult to implement a shared counter
using atomic registers. However, some care must be taken to guarantee that the counter uses only

a bounded amount of space.

Both Aspnes and Herlihy[6] and Attiya et al[7] describe shared counter implementations. The
two counter implementations both assign a register to hold the net increment due to each processor,
so that the counter’s value is simply the sum of the values in these registers. Both algorithms use
simple atomic snapshot protocols to allow the entire set of registers to be read in a single atomic

action.

Alas, neither implementation does quite what we would like. Even though the value stored in

14

Shared data:

scannable array count[0...n — 1], initialized to 0
procedure increment()

v := read(count[Processorld])

write((v 4 1) mod m, count[Processorld))
end
procedure decrement()

v := read(count[Processorld])

write((v — 1) mod m, count[Processorld))
end
function read()

scan(count)

v = Y1) count][d]

return v’ where —r < v <7 and v = v (mod m)
end

Figure 4: Pseudocode for Counter Operations

the counter will never exceed the range [—r,r], the net increment due to an individual processor
is potentially unbounded. The Aspnes and Herlihy protocol ignores this difficulty by assuming the
presence of unbounded registers (which it also uses to implement the atomic scan.) The Attiya et
al protocol uses only bounded registers, but enforces the bounds by prematurely terminating the
weak shared coin protocol if any processor’s register wanders out of a limited range. This premature
termination occurs infrequently, and is acceptable in a weak shared coin which does not need to
guarantee consistency. But it is not acceptable for a robust coin, as it may allow the scheduler
to force some processor to choose one value (through premature termination) after another has

already chosen a different value (through the normal workings of the shared coin protocol.)

A simple alternative to premature termination that still allows for bounded registers is to store
the remainder of each processor’s contribution relative to some convenient modulus m greater than

the total range 2r + 1. The counter value can then be reconstructed as the unique » in the range

15

[—r,r] that is congruent to the sum of the registers, modulo m. Pseudocode for the three counter
operations using this technique is shown in Figure 4; it assumes the presence of a scannable array
of registers, which can be built in a number of ways[5, 3, 2]. The algorithm of Afek et al[2] in
particular allows an atomic scan operation to be implemented with O(n?) bits of extra space and

a maximum of O(n?) primitive reads and writes per operation.

5. The Randomized Consensus Protocol

Figure 5 shows pseudocode for each processor’s behavior in the randomized consensus protocol. The
protocol uses three shared counters: the first two maintain a total of the number of participating
processors that started with inputs 0 and 1, respectively, and the last is used as the counter for a
modified version of the robust weak shared coin protocol. All of the counters start with an initial

value of 0.

The protocol is optimized for the case where few processors participate. We will define a
processor to be active if it takes at least one step before some processor decides on a value, and
denote by p the total number of active processors in a given execution. The protocol uses the
counters ag and a; to keep track of the number of active processors by having each processor

increment one or the other of these counters as it starts the protocol.

The protocol depends on being able to take an atomic snapshot of the counters. Since the first
two counters are never decremented, such a snapshot can be obtained as described in Figure 6.
Though the operation there defined is not wait-free, the values of ag and a; change at most p times

during the execution of the consensus protocol and thus any processor will go through at most

16

Shared data:
counter ag with range [0, 7], initialized to 0
counter a; with range [0, 7], initialized to 0
counter ¢ with range [—4n,4n], initialized to 0

procedure consensus(input)
increment(@ippyt)
repeat
read(ag, a1,)
if ¢ < —2n then decide 0
elseif ¢ > 2n then decide 1
elseif ¢ < —(ap + a1) or a; = 0 then decrement(c)
elseif ¢ > (ap 4 a1) or ag = 0 then increment(c)
else
if coin() = 0 then decrement(c)
else increment(c)

fi
fi

end
end

Figure 5: The Consensus Protocol

p extra passes during the entire duration of the protocol. If the counters are not primitives but
are instead constructed using an atomic scan operation as described in Section 4, the overhead of
Figure 6 can be avoided completely by simple reading all three counters in a single atomic scan of

the arrays that implement them.

Several features of the protocol are worth noting. First of all, the same “slopes” that ensured
consistency for the robust weak shared coin ensure consistency for the consensus protocol, for the
same reasons. Second, counters ag and ay allow the protocol to guarantee validity, as the random
walk is only invoked if both have non-zero values. These counters are also used to minimize
the range of the random walk, by taking advantage of the fact stated in the following lemma, a

modification of Lemma 6:

17

procedure ScanCounters()
repeat

ag = read(ag)

a; = read(ay)

¢ = read(c)

ay, = read(ag)

al = read(ay)
until a), = ag and | = a4
return ag,aq,c
end

Figure 6: Counter Scan for Randomized Consensus Protocol

Lemma 10 Let ag,aq,c be the values read from the counters by some processor and t the true

position of the random walk in the state preceding the read. Then |¢ —t| < ag+ a3 — 1.

Proof: There are at most ag 4+ a; — 1 processors with pending increments or decrements. il

To prove that the consensus protocol is correct, we must establish that it is consistent, that it
terminates, and that it is valid. The proof of consistency is a straightforward modification of the

proof of Lemma 4:

Lemma 11 If any processor reads a counter value v > 2n, then all subsequent reads will return

values > n + 1; in the symmetric case where v < —2n, all subsequent reads will be < —(n +1).

Proof: Apply the proof of Lemma 4 with K =n. |l

Similarly, the proof that the counter ¢ does not overflow is a straightforward modification of

Lemma 5:

Lemma 12 The value of ¢ never leaves the range [—4n,4n] in any execution of the consensus

18

protocol.

Proof: Apply the proof of Lemma 5 with K = n. I

Termination is trickier to demonstrate. As for the weak shared coin, the key to the proof of
the consensus protocol’s termination is the fact that the scheduler’s only alternative to moving the
true position randomly is to move it away from the origin. In the weak shared coin protocol, this
condition depends on fixing the parameter K > n. In the consensus protocol the situation is more
complicated, as the protocol uses its knowledge of the number of currently active processors to set
the inner boundaries of the slope close to the origin while still preventing the scheduler from being

able to force the true position to move toward the origin.

Lemma 13 Let n be the total number of processors and p be the number of processors that take
at least one step before some processor decides on a value. Then the worst-case expected running

time of the consensus protocol is O(p? + n) total counter operations.

Proof: We will show that the consensus protocol terminates in O(p? + n) time by reducing it
to a controlled random walk of the true position ¢. Divide the execution of the protocol into two
phases. In the first phase, at most one of ag, ay is nonzero; if the execution does not leave the first
phase before 2n increments or decrements have occurred the protocol will terminate after O(n)

additional steps by Lemma 11.

In the second phase, both ag and ay are nonzero. Let v be a value read by some processor
from the counter ¢. By Lemma 10 we know that [t — v| < ap + a; — 1 < p— 1. Now, to force an

increment during the second phase the scheduler must show a processor a counter value v that is

19

at least ag + aq, possibly by withholding local coin-flips to raise the value of ¢ or by withholding
increments to lower the value of ag + a;. In either case Lemma 10 applies and ¢ must be greater
than 0. The case of the scheduler attempting to force a decrement is symmetric, and thus in either

case the scheduler can only force the true position to move away from 0.

Furthermore, since p is both an upper bound on the distance between ¢ and ¢t and on the value
of ap + ay, if [t| > 2p then |v] > ag + a; and the true position will move away from 0 thereafter.
Thus the second phase of the execution can be modeled as a controlled random walk in the sense
of Lemma 3 with center 0, barriers at £2p, and a starting position of equal to the true position at
the end of the first phase. By Lemma 3, this random walk will take an expected O(p*) steps, each
consisting of a constant number of counter operations; to this value must be added O(n) steps until
termination, up to O(n) steps from the first phase, and O(p?) extra read operations due to extra

passes through the loop in ScanCounters(). The total expected number of counter operations is

thus O(p* 4+ n). |

Lemma 14 The protocol of Figure 5 satisfies the validity condition.

Proof: Suppose every processor starts with the input 1. Then ag is never incremented and thus
retains its initial value of 0 throughout the execution of the protocol. Thus each processor will
increment ¢ until it reads a value v > 2n at which point it will decide 1. The case where every

processor has input 0 is symmetric. |l

Combining the lemmas gives:

Theorem 15 Figure 5 implements a consensus protocol.

20

Protocol Running Time Space Used
(total operations) (total bits)

6] O(n?) Unbounded
[6] (using atomic registers) O(n*) Unbounded
[7] O(n?) O(n?)
[7] (using atomic registers) O(n*) O(n?)
Figure 5 O(p* +n) O(logn)
Figure 5 (using atomic registers) O(n?*(p* + n)) O(n?)

Table 1: Comparison of Consensus Protocols

Proof: Lemmas 11, 13, and 14. i

6. Discussion

Table 1 compares the time and space used by the consensus protocol described in this paper with
the corresponding statistics for the protocols of Aspnes and Herlihy[6] and Attiya et al[7]. All
values are expressed as a function of the total number of processors n and the number of active
processors p. Two cases are considered for each algorithm. In the first, atomic counters are available
as primitive objects. In the second, only atomic registers are available, and we assume that the
atomic counters (and whatever other structures are used by each protocol) are constructed from
them using the atomic snapshot protocol of Afek et al[2]. The running time in each case is the
worst-case expected running time expressed as the total number of operations on the available

primitives. The space is expressed as the total number of bits of state in the shared objects.

Table 1 shows three stages of evolution of what is essentially the same basic technique, as all
three protocols are based on the technique of using a random walk to minimize the effects of local
coin-flips trapped within stopped processors. The principal accomplishment of the present work
is to extend the structure of the random walk to include the functions of detecting agreement

and guaranteeing validity. Once these functions are handled within the weak shared coin itself,

21

limiting scheduler control over the outcome of the weak shared coin is no longer necessary to achieve
consensus. Thus the parameter K of the weak shared coin protocol can be set to minimize the
time taken in the random walk without regard to its effect on the bias €. For example, the weak
shared coin embedded in the consensus protocol of Figure 5 has an effective bias of %, as high as

is possible without setting K < p.

At the same time, the simplicity of the protocol allows the number and size of the shared counters
to be very small. Unfortunately, when the available primitives are limited to atomic registers this
reduction is lost in the @(n?) space overhead of the atomic scan operation. It is not immediately
clear that this overhead is a necessary feature of an atomic counter implementation; much work

remains to be done in this area.

6.1. Recent Developments

Since the appearance of the first version of this paper[4], a number of advancements have been
made in the state of the art of randomized consensus protocols. A brief summary will help to

indicate the paths along which consensus protocols have developed.

Saks, Shavit, and Woll[20] have constructed a consensus protocol with several interesting fea-
tures. The most noteworthy is the revival of the technique of using a non-robust weak shared coin
in a multi-round framework. Their non-robust coin is a hybrid of several coins, some of which
are optimized for a situation where nearly all processors participate in the protocol and run at
bounded relative speeds. The coin which is used in the general case is similar to the random walk
based coins of other polynomial-time consensus protocols; however, instead of terminating the walk
when a counter moves out of a given range, the walk is stopped after O(n?) “votes” are collected

22

regardless of the total value, and the outcome of the coin is determined by the majority of the
votes. The non-robustness of the coin arises from the possibility of different processors reading
different totals when the walk stops close to the origin. The main advantage of the structure is
that the proper functioning of the coin is much less dependent on detecting termination quickly;
Bracha and Rachman[8] have recently shown that using similar techniques it is possible to build
a weak shared coin which requires only O(n?logn/e?) atomic register operations. Unfortunately
both the Saks et al protocol and the Bracha and Rachman protocol use an unboundedly large set

of registers.

An alternative approach is that taken by Dwork et al[12]. They show that by replacing the
atomic snapshot with a weaker “time-lapse snapshot”, the protocol of Figure 5 can be made to run
in an expected O(n(p? 4+ n)) total atomic register operations. As their time-lapse snapshot requires
only bounded-sized registers, this result gives the currently fastest consensus protocol that does

not require unbounded space.

6.2. Open Problems

All of the wait-free consensus protocols known to date are based on a weak shared coin which
combines local coin flips by taking a majority, either when computing the sign of a total vote or
when computing the sign of the position of a random walk. Because the scheduler can choose to
withhold up to n — 1 local coin flips it can control the outcome of such a coin with high probability
unless the total of the local coin flips is at least n — 1 away from even. This property alone means
that such a protocol requires at least Q(n?) primitive operations to obtain a constant-bias weak

shared coin, even if the protocol uses more powerful deterministic primitives than single-writer

23

atomic registers. As the protocol of Bracha and Rachman comes very close to this bound it is
unlikely that current techniques will lead to much improvement without some new breakthrough.

Two questions that should be considered are:

1. Does every wait-free consensus protocol for the shared-memory model contain a weak shared

coin?

2. Can a constant-bias weak shared coin be built that requires asymptotically fewer than ©(n?)

local coin flips?

7. Acknowledgments

The author would like to thank Hagit Attiya, Maurice Herlihy, Orli Waarts, and Xia Zeqing for

their comments on earlier versions of this paper.

References

[1] K. Abrahamson. On achieving consensus using a shared memory. In Proceedings of the Seventh

ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, August 1988.

[2] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic
snapshots of shared memory. In Proceedings of the Ninth ACM SIGACT-SIGOPS Symposium

on Principles of Distributed Computing, pages 1-14, August 1990.

[3] James H. Anderson. Composite registers. In Proceedings of the Ninth ACM SIGACT-SIGOPS

Symposium on Principles of Distributed Computing, pages 15-29, August 1990.

24

[4]

[11]

[12]

James Aspnes. Time- and space-efficient randomized consensus. In Proceedings of the Ninth
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pages 325-331,

August 1990.

James Aspnes and Maurice Herlihy. Wait-free synchronization in the asynchronous pram
model. In Second Annual ACM Symposium on Parallel Algorithms and Architectures, July

1989.

James Aspnes and Maurice Herlihy. Fast randomized consensus using shared memory. Journal

of Algorithms, 11(3):441-461, September 1990.

H. Attiya, D. Dolev, and N. Shavit. Bounded polynomial randomized consensus. In Proceed-
ings of the Fighth ACM Symposium on Principles of Distributed Computing, pages 281-294,

August 1989.

Gabi Bracha and Ophir Rachman. Randomized consensus in expected O(n?logn) operations.

In Proceedings of the Fifth Workshop on Distributed Algorithms, 1991.

B. Chor, A. Israeli, and M. Li. On processor coordination using asynchronous hardware.
In Proceedings of the Sizth ACM Symposium on Principles of Distributed Computing, pages

86-97, 1987.

B. Chor and L. Moscovici. Solvability in asynchronous environments. In 30th Annual Sympo-

sium on Foundations of Computer Science, pages 422-427, October 1989.

D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed for distributed

consensus. Journal of the ACM, 34(1):77-97, January 1987.

Cynthia Dwork, Maurice Herlihy, Serge Plotkin, and Orli Waarts. Time-lapse snapshots.

Unpublished manuscript.

25

[13] E.B. Dynkin and A.A. Yushkevich. Controlled Markov Processes. Springer-Verlag, 1975.

[14] M. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributed commit with one

faulty process. Journal of the ACM, 32(2), April 1985.

[15] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and

Systems, 13(1):124-149, January 1991.

[16] Maurice P. Herlihy. Impossibility and universality results for wait-free synchronization. In
Proceedings of the Seventh ACM SIGACT-SIGOPS Symposium on Principles of Distributed

Computing, August 1988.

[17] Michael C. Loui and Hosame H. Abu-Amara. Memory requirements for agreement among
unreliable asynchronous processes. In Franco P. Preparata, editor, Advances in Computing

Research, volume 4. JAT Press, 1987.

[18] Nancy Lynch. I/O automata: A model for discrete event systems. Technical Report

MIT/LCS/TM-351, MIT Laboratory for Computer Science, March 1988.

[19] S. Plotkin. Sticky bits and universality of consensus. In Proceedings of the Fighth ACM

Symposium on Principles of Distributed Computing, pages 159-176, August 1989.

[20] Michael Saks, Nir Shavit, and Heather Woll. Optimal time randomized consensus — mak-
ing resilient algorithms fast in practice. In Proceedings of the Second Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 351-362, 1991.

[21] M. Santha and U.V. Vazirani. Generating quasi-random sequences from semi-random sources.

Journal of Computer and System Sciences, 33:75-87, 1986.

26

