
Time- and Space-E�cient Randomized ConsensusJames AspnesSchool of Computer ScienceCarnegie-Mellon UniversityPittsburgh, PA 15213February 10, 1992AbstractA protocol is presented which solves the randomized consensus problem[9] for shared memory.The protocol uses a total of O(p2+n) worst-case expected increment, decrement and read oper-ations on a set of three shared O(logn)-bit counters, where p is the number of active processorsand n is the total number of processors. It requires less space than previous polynomial-timeconsensus protocols[6, 7], and is faster when not all of the processors participate in the protocol.A modi�ed version of the protocol yields a weak shared coin whose bias is guaranteed to be inthe range 1=2� � regardless of scheduler behavior, and which is the �rst such protocol for theshared-memory model to guarantee that all processors agree on the outcome of the coin.1

1. IntroductionConsensus is a decision problem in which n processors, each starting with a value (0 or 1) notknown to the others, must collectively agree on a single value. A consensus protocol is a distributedprotocol for solving consensus. It is correct if it meets the following conditions:� Consistency. All processors decide on the same value.� Termination. Every processor decides on some value in �nite expected time.� Validity. If every processor starts with the same value, every processor decides on that value.We are interested in consensus protocols in which the processors communicate through someshared concurrent data structure (for example, a collection of single-writer atomic registers). Wewould like our protocols to be wait-free: every processor terminates after a �nite number of its ownsteps, regardless of other processors' halting failures or relative speeds[15]. Wait-free consensusis fundamental to synchronization without mutual exclusion. It can be used to obtain wait-freeimplementations of arbitrary abstract data types with atomic operations[16, 19, 15]. Consensusis also complete for distributed decision tasks[10] in the sense that it can be used to solve all suchtasks that have a wait-free solution.Consensus is often viewed as a game played between a set of processors and an adversarialscheduler, where the powers available to the scheduler are chosen to simulate the conditions underwhich the protocol is required to operate. It has been known for some time that the ability ofthe scheduler to stop even a single processor is su�cient to prevent consensus from being solvedby a deterministic algorithm using only atomic registers[17, 14, 11, 9, 15]. Chor, Israeli, and Li[9]2

showed that it is possible to solve consensus using globally-visible atomic coin
ips as primitiveactions. Since then a number of protocols have been put forward[1, 6, 7] which achieve consensuswith only local coin-
ip operations. These protocols work even against an adversary which hascomplete knowledge of the processors' programming and internal states, and total control over thescheduling of reads and writes.The protocol of Aspnes and Herlihy[6] is of particular interest because it is the �rst such algo-rithm which runs in polynomial expected time. Unfortunately it makes extensive use of unboundedregisters, a defect that is corrected by Attiya, Dolev, and Shavit[7], who describe the �rst knownprotocol that runs in both polynomial time and bounded space.These protocols work on the same basic principle: the processors repeatedly execute a weakshared coin protocol until all are in agreement. The weak shared coin abstraction has the prop-erty that all processors that participate in it agree on its outcome with high probability, and thescheduler has only limited control over what that outcome will be. The Aspnes and Herlihy weakshared coin protocol works by having the processors collectively move a counter through a randomwalk, each repeatedly
ipping a local coin to decide whether to move it down or up. If a processornotices that the counter has moved a predesignated distance from the origin, it returns with avalue determined by the sign of the counter. The key to this protocol is that the scheduler's controlis in e�ect limited to \withholding" local coin
ips by stopping processors before they can writethe local
ips' results. Since the e�ect of any small number of local coin
ips on the outcome ofthe protocol can be made arbitrarily small, the scheduler's power over the outcome can be madearbitrarily weak.These weak shared coin protocols, however, are not robust: it is possible for the scheduler to3

arrange that some processor decides 1 and then have others decide 0 with nonzero probability.Thus they cannot be used by themselves to solve consensus| instead, it is necessary to providespace for many successive shared coins and a round-based superstructure for detecting agreementand invalidating the outcome of older shared coins. The present work eliminates the need formultiple rounds by using a robust weak shared coin which guarantees that all processors agree onthe outcome of the
ip. Consensus is handled as a degenerate case of the weak shared coin witha preamble attached to ensure validity. The result is a simpler consensus protocol which uses lessspace, less time, and is more amenable to optimization than its predecessors.The contributions of the paper are two-fold. First, it describes a weak shared coin protocol whichuses both bounded space and is robust in the sense of guaranteeing agreement on its outcome, whichmay have applications as a source of semi-random bits[21]. Second, it describes the �rst polynomial-time consensus protocol whose running time depends primarily on the number of active processors,rather than the total number of processors. Thus the protocol is likely to be of use in situationswhere typically only a few of many processors may participate, such as when implementing a sharedabstract data type that only a fraction of the processors in the system might access concurrently.1.1. ModelWe use the probabilistic I/O automaton model[6], a probabilistic extension of the I/O automatonmodel[18]. Details of the model are omitted here. Informally, the system is assumed to consistof n processors, each of which can execute as a step either a single operation of some sharedprimitive object (such as an atomic register or a counter with atomic increment, decrement, andread operations) or a local coin
ip. The sequencing of the processors' actions is controlled by a4

scheduler, a function which selects a processor to run for each possible state of the system. Implicitin the de�nition of the scheduler are its ability to exploit total knowledge of the system's state(including the internal state of the processors) and its inability to predict the outcome of futurelocal coin
ips.It is not clear how best to measure the time performance of a wait-free algorithm. Previous workon wait-free consensus has considered only the total number of primitive operations used, withoutregard to how they are distributed among the processors or when they occur, an approach that isadopted in this paper. The primary virtues of this measure are both its simplicity and the fact thatit adds no new timing assumptions to the wait-free model. Note that the total number of operationsdoes depend on the choice of primitive object; in most of the paper it will be assumed that anincrement, decrement, or read of an atomic counter counts as a single operation. Implementingthese operations using the weaker primitive of single-writer atomic registers as described in Section4 will generally increase the stated running times by a factor of O(n2).2. Probabilistic PreliminariesLet us begin by stating a few simple lemmas about the behavior of random walks.Lemma 1 Consider a symmetric random walk with step size 1 running between absorbing barriersat a and b and starting at x, a < x < b. Then:1. The expected number of steps until one of the barriers is reached is given by (x� a)(b� x),and is always less than or equal to �a�b2 �2.5

2. The probability that the random walk hits b before a is x�ab�a .Lemma 2 Consider a symmetric random walk with step size 1 running between a re
ecting barrierat a and an absorbing barrier at b, starting at position x, a < x < b. Then the expected time untilb is reached is (x� (a� (b� a)))(b� x) � (b� a)2Proof: This random walk can be obtained from the random walk with absorbing barriers at b anda� (b� a) by the transformation x 7! a+ jx� aj.The following critical lemma describes a modi�ed random walk that will be of great importancein analyzing the weak shared coin and consensus protocols:Lemma 3 Consider a symmetric random walk with absorbing barriers at a and b with the followingtwist: a point c, a < c < b is designated as the center of the random walk. Before each step, anadversary chooses between moving randomly in either direction with probability 1=2, or moving awayfrom c with probability 1. The adversary may also choose the starting position x of the randomwalk to be anywhere in the range from a to b. No matter what choices the adversary makes, Theexpected number of steps until one of the barriers is reached is less than or equal to (b� a)2Proof: The game described can be thought of as a controlled Markov process in which the adversaryis trying to maximize the expected time. As it is played over a �nite set of states, it is a standardresult of the theory of controlled Markov processors[13] that the maximum time can be achievedwith a simple strategy, one which chooses the same option from each state at all times.6

Such a strategy can be speci�ed by listing the points where the adversary chooses to force theparticle to move away from c. These points divide the random walk into distinct regions: theregion containing c acts like a random walk with two absorbing barriers, and the others act likerandom walks with one absorbing barrier (on the side away from c) and one re
ecting barrier (onthe side toward c). Because each barrier can only be crossed away from c, once the particle leavesa region it can never return. Now, suppose the particle starts in a region with width w1. Afterat most w21 steps on average (by Lemmas 2 and 1) it will pass into a new region with width w2;after an additional w22 steps it will pass into a new region of width w3, and so on until either a orb is reached. Since the regions all �t between a and b, Pwi � b� a, and thus (since each wi > 0)Pw2i � (b� a)2.Though the bound in Lemma 3 is proved in terms of a very powerful adversary that is alwaysallowed to choose between a random move and a deterministic move at each step, the bound appliesequally well to a weaker adversary whose choices are more constrained, as the stronger adversarycould always choose to operate within the weaker adversary's constraints. This technique, ofproving bounds for a strong adversary that then carry over to a weaker one, has great simplifyingpower. It will be used extensively in the analysis of the shared coin and consensus protocols.3. The Weak Shared Coin ProtocolA weak shared coin protocol with bias � is a distributed protocol in which n processors agree on avalue (0 or 1) with high probability. A weak shared coin protocol is correct if it meets the followingconditions: 7

Shared data:counter c with range [�K � 3n;K + 3n], initialized to 0procedure SharedCoin()repeatc := read(counter)if c � �(K + n) then decide 0elseif c � (K + n) then decide 1elseif c � �K then decrement(counter)elseif c � K then increment(counter)elseif LocalCoin() = 0 then decrement(counter)else increment(counter)��end end Figure 1: Robust weak shared coin protocol.� Termination. Every processor decides on some value in �nite expected time.� Bounded bias. The probability that at least one processor decides on a given value is at most1=2 + � where 0 � � < 1=2.A weak shared coin protocol is robust if, in addition, it satis�es the consistency condition:� Consistency. All processors decide on the same value.Figure 1 shows pseudocode for each processor's behavior in the robust weak shared coin protocol.The coin is constructed using an atomic counter, which supports atomic increment, decrement, andread operations. In this section, these operations are assumed to take unit time.A processor's behavior in the protocol is represented in pictorial form in Figure 2. While aprocessor reads values in the central range from �K to K (where K is a parameter of the protocol)8

���� ZZZZ~����= � -�������� ZZZZZZZZ ��-K +K-K-n +K+nFigure 2: Pictorial representation of robust weak shared coin protocol.it
ips a local fair coin to decide whether to increment or decrement the counter. This part ofthe protocol is essentially the same as the random-walk-based weak shared coin of Aspnes andHerlihy[6]. What is new is the addition of a \slope" at either side of the random walk. On theseslopes, a processor does not move the counter randomly but instead always moves it away fromthe center. When a processor reads a counter value in one of the \buckets" beyond the slopes, itdecides either 0 or 1 depending on the sign of the counter.If the slopes are wide enough, once any processor has seen a value that causes it to decide, allother processors will see values that cause them to push the counter toward the same decision.This mechanism eliminates the possibility that delayed writes might move the counter out of thedecision range and allow the random walk (with small but non-negligible probability) to wanderover to the other side. This fact is stated formally in the following lemma:Lemma 4 If any processor reads a counter value v � (K+n), then all subsequent reads will returnvalues � K+1; in the symmetric case where v � �(K+n), all subsequent reads will be � �(K+1).9

Proof: Suppose that a processor has read v � (K + n); then it immediately terminates leavingn � 1 running processors. Thus the number d of processors that will execute a decrement beforetheir next read is at most n � 1. Let l = c � d where c is the value stored in the counter. Sincec � (K+n), it must be the case that l � K+1. Now consider the e�ect of the actions the schedulercan take. If it allows a decrement to proceed, c and d both drop by 1 and l remains constant. If itallows an increment to occur, c increases and l increases with it. If it allows a read, the value readis c � l � K + 1, and thus d is una�ected. In each case l remains at least K + 1, and the claimfollows since c � l. The proof of the symmetric case is similar.The consistency property follows immediately from Lemma 4. A similar argument shows thatthe counter will not over
ow:Lemma 5 The counter value never leaves the range [K� 3n;K+3n] in any execution of the weakshared coin protocol.Proof: Suppose that the counter reaches K + 2n at some point. Then each processor will executeat most one increment or decrement operation it reads the counter, at which point it will decide 1and execute no additional operations. Thus the counter cannot exceed K +2n+ n = K +3n. Thefull result follows by symmetry.Proving the termination and bounded bias properties of the shared coin requires some additionalmachinery. De�ne the true position t of the random walk to be the value in the counter, c, plus1 for each processor that will increment the counter before its next read, and minus 1 for eachprocessor that will decrement the counter before its next read. The following Lemma relates thevalue read by a processor to the true position of the random walk:10

.. � - ZZZZ~����= �������� ZZZZZZZZ��������(((((((((((hhhhhhhhhhhZZZZZZZZ. .����= ZZZZ~� -
+K-(n-1)-K+(n-1) +K-K-K-(n-1) +K+(n-1)Figure 3: The protocol as a controlled random walk.Lemma 6 Let c be a value read from the counter by some processor and t the true position of therandom walk in the state preceding the read. Then jc� tj � n � 1.Proof: There can be at most n � 1 processors with pending increments or decrements.Let us assume hereafter that the scheduler can cause a processor to read any value betweent� (n�1) and t+(n�1); as such a scheduler is more powerful than any scheduler the protocol willactually face, any \good" statement we can prove with the assumption will carry over a fortiori tothe situation without. The advantage of this simplifying assumption is that it allows us to forgetabout the vagaries of the counter value. Instead we can treat the protocol as a controlled randomwalk using the true position t.Consider the lower part of Figure 3 (the upper part simply repeats Figure 2 without the buckets.)If the true position t is in the central region between �K + (n� 1) and K � (n� 1), then Lemma11

6 says that any processor which reads the counter will see a value between �K and K and movet randomly. In the two immediately adjacent regions a processor will either read a value between�K and K, and move t randomly, or read a value that causes it to move t away from 0. Finally,any processor that reads a value in the outermost regions where jtj > K + (n� 1) will either makea decision or move t away from 0. In all of these cases, the scheduler is never allowed to force thattrue position toward 0; and if K is large relative to n much of the execution of the protocol will bespent in the central region where the scheduler's control is ine�ective. These two properties of theprotocol are the basis of the proof of its termination and bounded bias, as shown below.Lemma 7 The robust weak shared coin protocol executes an expected O((K + n)2) total counteroperations when K � n.Proof: If we consider the true position t, Lemma 6 implies that the scheduler can only force tup if t � K � (n � 1) � 1 and down if t � �K + (n � 1) � �1. Furthermore if jtj ever exceedsK+n+(n�1), each processor will decide after its next read. Thus the movement of the true positionis a controlled random walk in the sense of Lemma 3 with center 0 and barriers at �(K + 2n� 1).The expected number of steps until a barrier is reached is at most 4(K + 2n � 1)2 steps, whichwill be followed by at most 2n operations as the processors each decide. Since each step takes aconstant number of counter operations the expected number of operations required is O((K+n)2).The time bound of Lemma 7 shows that every processor terminates in �nite expected time whenK � n. The bounded bias property is a consequence of the following lemma:12

Lemma 8 Against any scheduler, the probability that the processors in the robust weak shared coinprotocol will decide 1 is between K�(n�1)2K and K+(n�1)2K .Proof: Suppose the scheduler is trying to maximize the probability of deciding 1. Under thesimplifying assumption it can force a decision of 1 as soon as t = K� (n�1); however, if it allows tto slip below �K�(n�1) the protocol will eventually decide 0. When �K�(n�1) < t � K�(n�1)the scheduler may choose between moving t randomly or forcing t toward �K � (n� 1). Clearly,forcing the counter toward �K�(n�1) can only increase the probability of deciding 0, so choosingto move t randomly maximizes the problem of deciding 1. But if the scheduler makes this choice,the movement of the true position becomes a simple random walk with absorbing barriers at�K � (n � 1) and K � (n � 1). By Lemma 1, the probability that t reaches K � (n � 1) �rst isK+(n�1)2K . The lower bound follows by symmetry.Combining the lemmas we obtain:Theorem 9 When K > n, the protocol of Figure 1 implements a robust weak shared coin.Proof: Consistency follows from Lemma 4, termination from Lemma 7, and bounded bias fromLemma 8.Lemma 8 allows K to be chosen to obtain arbitrarily small non-negative bias.1 Let the bias ofthe shared coin be 12 + �, then � � n � 12K1A wait-free coin with zero bias is known to be impossible in the shared-memory model[6].13

which gives K � n� 12� :Combining this inequality with Lemma 7 gives a bound on the worst-case expected running timefor the protocol of O((n=�)2) total operations. This time is comparable to the worst-case expectedrunning times of the protocol's non-robust ancestors. The protocol thus achieves robustness withoutpaying a signi�cant cost in speed.4. Implementing a Bounded Counter with Atomic RegistersThe robust weak shared coin assumes the presence of a shared counter supporting atomic increment,decrement, and read operations, with the restriction that no operation will be applied that willmove the counter out of some �xed range [�r; r]. In practice such a counter is not likely to beavailable as a hardware primitive. Fortunately it is not di�cult to implement a shared counterusing atomic registers. However, some care must be taken to guarantee that the counter uses onlya bounded amount of space.Both Aspnes and Herlihy[6] and Attiya et al[7] describe shared counter implementations. Thetwo counter implementations both assign a register to hold the net increment due to each processor,so that the counter's value is simply the sum of the values in these registers. Both algorithms usesimple atomic snapshot protocols to allow the entire set of registers to be read in a single atomicaction.Alas, neither implementation does quite what we would like. Even though the value stored in14

Shared data:scannable array count[0 . . .n � 1], initialized to 0procedure increment()v := read(count[ProcessorId])write((v + 1)modm; count[ProcessorId])endprocedure decrement()v := read(count[ProcessorId])write((v � 1) modm; count[ProcessorId])endfunction read()scan(count)v :=Pn�1i=0 count[i]return v0 where �r � v0 � r and v0 � v (modm)end Figure 4: Pseudocode for Counter Operationsthe counter will never exceed the range [�r; r], the net increment due to an individual processoris potentially unbounded. The Aspnes and Herlihy protocol ignores this di�culty by assuming thepresence of unbounded registers (which it also uses to implement the atomic scan.) The Attiya etal protocol uses only bounded registers, but enforces the bounds by prematurely terminating theweak shared coin protocol if any processor's register wanders out of a limited range. This prematuretermination occurs infrequently, and is acceptable in a weak shared coin which does not need toguarantee consistency. But it is not acceptable for a robust coin, as it may allow the schedulerto force some processor to choose one value (through premature termination) after another hasalready chosen a di�erent value (through the normal workings of the shared coin protocol.)A simple alternative to premature termination that still allows for bounded registers is to storethe remainder of each processor's contribution relative to some convenient modulus m greater thanthe total range 2r + 1. The counter value can then be reconstructed as the unique v in the range15

[�r; r] that is congruent to the sum of the registers, modulo m. Pseudocode for the three counteroperations using this technique is shown in Figure 4; it assumes the presence of a scannable arrayof registers, which can be built in a number of ways[5, 3, 2]. The algorithm of Afek et al[2] inparticular allows an atomic scan operation to be implemented with O(n2) bits of extra space anda maximum of O(n2) primitive reads and writes per operation.5. The Randomized Consensus ProtocolFigure 5 shows pseudocode for each processor's behavior in the randomized consensus protocol. Theprotocol uses three shared counters: the �rst two maintain a total of the number of participatingprocessors that started with inputs 0 and 1, respectively, and the last is used as the counter for amodi�ed version of the robust weak shared coin protocol. All of the counters start with an initialvalue of 0.The protocol is optimized for the case where few processors participate. We will de�ne aprocessor to be active if it takes at least one step before some processor decides on a value, anddenote by p the total number of active processors in a given execution. The protocol uses thecounters a0 and a1 to keep track of the number of active processors by having each processorincrement one or the other of these counters as it starts the protocol.The protocol depends on being able to take an atomic snapshot of the counters. Since the �rsttwo counters are never decremented, such a snapshot can be obtained as described in Figure 6.Though the operation there de�ned is not wait-free, the values of a0 and a1 change at most p timesduring the execution of the consensus protocol and thus any processor will go through at most16

Shared data:counter a0 with range [0; n], initialized to 0counter a1 with range [0; n], initialized to 0counter c with range [�4n; 4n], initialized to 0procedure consensus(input)increment(ainput)repeatread(a0; a1; c)if c � �2n then decide 0elseif c � 2n then decide 1elseif c � �(a0 + a1) or a1 = 0 then decrement(c)elseif c � (a0 + a1) or a0 = 0 then increment(c)elseif coin() = 0 then decrement(c)else increment(c)��endend Figure 5: The Consensus Protocolp extra passes during the entire duration of the protocol. If the counters are not primitives butare instead constructed using an atomic scan operation as described in Section 4, the overhead ofFigure 6 can be avoided completely by simple reading all three counters in a single atomic scan ofthe arrays that implement them.Several features of the protocol are worth noting. First of all, the same \slopes" that ensuredconsistency for the robust weak shared coin ensure consistency for the consensus protocol, for thesame reasons. Second, counters a0 and a1 allow the protocol to guarantee validity, as the randomwalk is only invoked if both have non-zero values. These counters are also used to minimizethe range of the random walk, by taking advantage of the fact stated in the following lemma, amodi�cation of Lemma 6: 17

procedure ScanCounters()repeata0 = read(a0)a1 = read(a1)c = read(c)a00 = read(a0)a01 = read(a1)until a00 = a0 and a01 = a1return a0; a1; cend Figure 6: Counter Scan for Randomized Consensus ProtocolLemma 10 Let a0; a1; c be the values read from the counters by some processor and t the trueposition of the random walk in the state preceding the read. Then jc� tj � a0 + a1 � 1.Proof: There are at most a0 + a1 � 1 processors with pending increments or decrements.To prove that the consensus protocol is correct, we must establish that it is consistent, that itterminates, and that it is valid. The proof of consistency is a straightforward modi�cation of theproof of Lemma 4:Lemma 11 If any processor reads a counter value v � 2n, then all subsequent reads will returnvalues � n+ 1; in the symmetric case where v � �2n, all subsequent reads will be � �(n+ 1).Proof: Apply the proof of Lemma 4 with K = n.Similarly, the proof that the counter c does not over
ow is a straightforward modi�cation ofLemma 5:Lemma 12 The value of c never leaves the range [�4n; 4n] in any execution of the consensus18

protocol.Proof: Apply the proof of Lemma 5 with K = n.Termination is trickier to demonstrate. As for the weak shared coin, the key to the proof ofthe consensus protocol's termination is the fact that the scheduler's only alternative to moving thetrue position randomly is to move it away from the origin. In the weak shared coin protocol, thiscondition depends on �xing the parameter K � n. In the consensus protocol the situation is morecomplicated, as the protocol uses its knowledge of the number of currently active processors to setthe inner boundaries of the slope close to the origin while still preventing the scheduler from beingable to force the true position to move toward the origin.Lemma 13 Let n be the total number of processors and p be the number of processors that takeat least one step before some processor decides on a value. Then the worst-case expected runningtime of the consensus protocol is O(p2 + n) total counter operations.Proof: We will show that the consensus protocol terminates in O(p2 + n) time by reducing itto a controlled random walk of the true position t. Divide the execution of the protocol into twophases. In the �rst phase, at most one of a0, a1 is nonzero; if the execution does not leave the �rstphase before 2n increments or decrements have occurred the protocol will terminate after O(n)additional steps by Lemma 11.In the second phase, both a0 and a1 are nonzero. Let v be a value read by some processorfrom the counter c. By Lemma 10 we know that jt � vj � a0 + a1 � 1 � p � 1. Now, to force anincrement during the second phase the scheduler must show a processor a counter value v that is19

at least a0 + a1, possibly by withholding local coin-
ips to raise the value of c or by withholdingincrements to lower the value of a0 + a1. In either case Lemma 10 applies and t must be greaterthan 0. The case of the scheduler attempting to force a decrement is symmetric, and thus in eithercase the scheduler can only force the true position to move away from 0.Furthermore, since p is both an upper bound on the distance between c and t and on the valueof a0 + a1, if jtj � 2p then jvj � a0 + a1 and the true position will move away from 0 thereafter.Thus the second phase of the execution can be modeled as a controlled random walk in the senseof Lemma 3 with center 0, barriers at �2p, and a starting position of equal to the true position atthe end of the �rst phase. By Lemma 3, this random walk will take an expected O(p2) steps, eachconsisting of a constant number of counter operations; to this value must be added O(n) steps untiltermination, up to O(n) steps from the �rst phase, and O(p2) extra read operations due to extrapasses through the loop in ScanCounters(). The total expected number of counter operations isthus O(p2 + n).Lemma 14 The protocol of Figure 5 satis�es the validity condition.Proof: Suppose every processor starts with the input 1. Then a0 is never incremented and thusretains its initial value of 0 throughout the execution of the protocol. Thus each processor willincrement c until it reads a value v � 2n at which point it will decide 1. The case where everyprocessor has input 0 is symmetric.Combining the lemmas gives:Theorem 15 Figure 5 implements a consensus protocol.20

Protocol Running Time Space Used(total operations) (total bits)[6] O(n2) Unbounded[6] (using atomic registers) O(n4) Unbounded[7] O(n2) O(n2)[7] (using atomic registers) O(n4) O(n2)Figure 5 O(p2 + n) O(logn)Figure 5 (using atomic registers) O(n2(p2 + n)) O(n2)Table 1: Comparison of Consensus ProtocolsProof: Lemmas 11, 13, and 14.6. DiscussionTable 1 compares the time and space used by the consensus protocol described in this paper withthe corresponding statistics for the protocols of Aspnes and Herlihy[6] and Attiya et al[7]. Allvalues are expressed as a function of the total number of processors n and the number of activeprocessors p. Two cases are considered for each algorithm. In the �rst, atomic counters are availableas primitive objects. In the second, only atomic registers are available, and we assume that theatomic counters (and whatever other structures are used by each protocol) are constructed fromthem using the atomic snapshot protocol of Afek et al[2]. The running time in each case is theworst-case expected running time expressed as the total number of operations on the availableprimitives. The space is expressed as the total number of bits of state in the shared objects.Table 1 shows three stages of evolution of what is essentially the same basic technique, as allthree protocols are based on the technique of using a random walk to minimize the e�ects of localcoin-
ips trapped within stopped processors. The principal accomplishment of the present workis to extend the structure of the random walk to include the functions of detecting agreementand guaranteeing validity. Once these functions are handled within the weak shared coin itself,21

limiting scheduler control over the outcome of the weak shared coin is no longer necessary to achieveconsensus. Thus the parameter K of the weak shared coin protocol can be set to minimize thetime taken in the random walk without regard to its e�ect on the bias �. For example, the weakshared coin embedded in the consensus protocol of Figure 5 has an e�ective bias of p�12p , as high asis possible without setting K < p.At the same time, the simplicity of the protocol allows the number and size of the shared countersto be very small. Unfortunately, when the available primitives are limited to atomic registers thisreduction is lost in the �(n2) space overhead of the atomic scan operation. It is not immediatelyclear that this overhead is a necessary feature of an atomic counter implementation; much workremains to be done in this area.6.1. Recent DevelopmentsSince the appearance of the �rst version of this paper[4], a number of advancements have beenmade in the state of the art of randomized consensus protocols. A brief summary will help toindicate the paths along which consensus protocols have developed.Saks, Shavit, and Woll[20] have constructed a consensus protocol with several interesting fea-tures. The most noteworthy is the revival of the technique of using a non-robust weak shared coinin a multi-round framework. Their non-robust coin is a hybrid of several coins, some of whichare optimized for a situation where nearly all processors participate in the protocol and run atbounded relative speeds. The coin which is used in the general case is similar to the random walkbased coins of other polynomial-time consensus protocols; however, instead of terminating the walkwhen a counter moves out of a given range, the walk is stopped after O(n2) \votes" are collected22

regardless of the total value, and the outcome of the coin is determined by the majority of thevotes. The non-robustness of the coin arises from the possibility of di�erent processors readingdi�erent totals when the walk stops close to the origin. The main advantage of the structure isthat the proper functioning of the coin is much less dependent on detecting termination quickly;Bracha and Rachman[8] have recently shown that using similar techniques it is possible to builda weak shared coin which requires only O(n2 logn=�2) atomic register operations. Unfortunatelyboth the Saks et al protocol and the Bracha and Rachman protocol use an unboundedly large setof registers.An alternative approach is that taken by Dwork et al[12]. They show that by replacing theatomic snapshot with a weaker \time-lapse snapshot", the protocol of Figure 5 can be made to runin an expected O(n(p2+n)) total atomic register operations. As their time-lapse snapshot requiresonly bounded-sized registers, this result gives the currently fastest consensus protocol that doesnot require unbounded space.6.2. Open ProblemsAll of the wait-free consensus protocols known to date are based on a weak shared coin whichcombines local coin
ips by taking a majority, either when computing the sign of a total vote orwhen computing the sign of the position of a random walk. Because the scheduler can choose towithhold up to n� 1 local coin
ips it can control the outcome of such a coin with high probabilityunless the total of the local coin
ips is at least n� 1 away from even. This property alone meansthat such a protocol requires at least
(n2) primitive operations to obtain a constant-bias weakshared coin, even if the protocol uses more powerful deterministic primitives than single-writer23

atomic registers. As the protocol of Bracha and Rachman comes very close to this bound it isunlikely that current techniques will lead to much improvement without some new breakthrough.Two questions that should be considered are:1. Does every wait-free consensus protocol for the shared-memory model contain a weak sharedcoin?2. Can a constant-bias weak shared coin be built that requires asymptotically fewer than �(n2)local coin
ips?7. AcknowledgmentsThe author would like to thank Hagit Attiya, Maurice Herlihy, Orli Waarts, and Xia Zeqing fortheir comments on earlier versions of this paper.References[1] K. Abrahamson. On achieving consensus using a shared memory. In Proceedings of the SeventhACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, August 1988.[2] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomicsnapshots of shared memory. In Proceedings of the Ninth ACM SIGACT-SIGOPS Symposiumon Principles of Distributed Computing, pages 1{14, August 1990.[3] James H. Anderson. Composite registers. In Proceedings of the Ninth ACM SIGACT-SIGOPSSymposium on Principles of Distributed Computing, pages 15{29, August 1990.24

[4] James Aspnes. Time- and space-e�cient randomized consensus. In Proceedings of the NinthACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pages 325{331,August 1990.[5] James Aspnes and Maurice Herlihy. Wait-free synchronization in the asynchronous prammodel. In Second Annual ACM Symposium on Parallel Algorithms and Architectures, July1989.[6] James Aspnes and Maurice Herlihy. Fast randomized consensus using shared memory. Journalof Algorithms, 11(3):441{461, September 1990.[7] H. Attiya, D. Dolev, and N. Shavit. Bounded polynomial randomized consensus. In Proceed-ings of the Eighth ACM Symposium on Principles of Distributed Computing, pages 281{294,August 1989.[8] Gabi Bracha and Ophir Rachman. Randomized consensus in expected O(n2 log n) operations.In Proceedings of the Fifth Workshop on Distributed Algorithms, 1991.[9] B. Chor, A. Israeli, and M. Li. On processor coordination using asynchronous hardware.In Proceedings of the Sixth ACM Symposium on Principles of Distributed Computing, pages86{97, 1987.[10] B. Chor and L. Moscovici. Solvability in asynchronous environments. In 30th Annual Sympo-sium on Foundations of Computer Science, pages 422{427, October 1989.[11] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed for distributedconsensus. Journal of the ACM, 34(1):77{97, January 1987.[12] Cynthia Dwork, Maurice Herlihy, Serge Plotkin, and Orli Waarts. Time-lapse snapshots.Unpublished manuscript. 25

[13] E.B. Dynkin and A.A. Yushkevich. Controlled Markov Processes. Springer-Verlag, 1975.[14] M. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributed commit with onefaulty process. Journal of the ACM, 32(2), April 1985.[15] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages andSystems, 13(1):124{149, January 1991.[16] Maurice P. Herlihy. Impossibility and universality results for wait-free synchronization. InProceedings of the Seventh ACM SIGACT-SIGOPS Symposium on Principles of DistributedComputing, August 1988.[17] Michael C. Loui and Hosame H. Abu-Amara. Memory requirements for agreement amongunreliable asynchronous processes. In Franco P. Preparata, editor, Advances in ComputingResearch, volume 4. JAI Press, 1987.[18] Nancy Lynch. I/O automata: A model for discrete event systems. Technical ReportMIT/LCS/TM-351, MIT Laboratory for Computer Science, March 1988.[19] S. Plotkin. Sticky bits and universality of consensus. In Proceedings of the Eighth ACMSymposium on Principles of Distributed Computing, pages 159{176, August 1989.[20] Michael Saks, Nir Shavit, and Heather Woll. Optimal time randomized consensus | mak-ing resilient algorithms fast in practice. In Proceedings of the Second Annual ACM-SIAMSymposium on Discrete Algorithms, pages 351{362, 1991.[21] M. Santha and U.V. Vazirani. Generating quasi-random sequences from semi-random sources.Journal of Computer and System Sciences, 33:75{87, 1986.26

