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For the ase of alloating multiple objets to multiple bidders [8,12,17,20,21,27℄, ombinato-rial autions are perhaps the most important form of autions in the Internet Age, where biddersare inreasingly software agents. Oftentimes a bid by an agent is a subset of the aution objets,and the agent needs the entire subset to omplete a task. Di�erent bids may share the sameobjet, but the winning bids must not share any objet [24℄. Combinatorial autions were �rstproposed by Rassenti et al. [29℄ as one-round mehanisms for airport time slot alloation. Bankset al. [3℄, DeMartini et al. [10℄, and Parkes and Ungar [28℄ formulated multiple-round mehanisms.It is in general NP -hard for the autioneer to determine a set of winning bids of a ombinatorialaution whih maximizes the revenue of the aution. To address this omputational diÆulty,Rothkopf et al. [33℄ plaed onstraints on permissible bids. Lehmann et al. [22℄ and Fujishimaet al. [11℄ onsidered approximation algorithms. Sandholm and Suri [34℄ designed anytime algo-rithms, whih return a sequene of monotonially improving solutions that eventually onvergesto optimal.In this paper, we propose a general framework to exploit topologial strutures of the bids todetermine the winning bids with a provably good approximation ratio in linear time. The followingdisussion uses the sale of a ar as a light-hearted example to explain our omputational problemsand key onepts.Imagine that we are in the business of autioning used ars. If we insist on selling eah aras a unit, we an sell eah ar to the highest bidder. If we are willing to sell parts of the ar, wean still sell eah part to the highest bidder. But suppose that some bidders are only interestedin buying several parts at one: Alie may not want to buy a tire unless she an get the wheelthat goes with it, while Bob might only be interested in both rear wheels and the axle betweenthem. How do we deide whih of a set of oniting bids to aept?We will assume that our only goal is to maximize our total revenue. Then we an express thisproblem as a simple ombinatorial optimization problem. We have some universe O of objets,and our buyers supply us with a set A of bids. The i-th bid onsists of a subset Ai of O and aprie pi that the buyer is willing to pay for all of the objets in Si. We would like to hoose aolletion of bids B � A that yields the best possible total prie while being onsistent, in thesense that no two sets Ai and Aj in B overlap.As the autioneer, we an onstrut a bid graph G whose nodes are the bids and whih hasan edge between any two bids that share an objet. Then, a set of onsistent bids is simply anindependent set in G, i.e., a set of nodes no two of whih are onneted by an edge. Eah nodeis given a weight equal to the value of the bid it represents.Sadly, this means that the problem of �nding the most valuable onsistent set of bids is athinly-disguised version of the maximum weight independent set problem, whih is not only NP -hard, but annot be approximated to within a ratio O(n1��) for an n-node graph unless P = NP[16℄.1 Even for the simplest ase when all node weights are one, the maximum weight independentset problem is NP -hard even when every vertex has degree at most d for any d � 3, and in fatannot be approximated within a ratio of d" for some " > 0 unless P = NP [1℄. The best knownalgorithm (for arbitrary d) ahieves an approximation within a fator of O(d= log log d) [15℄. Asa result, it seems hopeless if we model our ombinatorial aution problem as an independent setproblem unless we exploit the topologial struture of the underlying bid graph.Using ideas from the interval seletion algorithm of Berman and DasGupta [7℄, we desribe inSetion 2 a linear-time improvement of the greedy algorithm, alled the opportunity ost algorithm,1The fat that the bid graph is de�ned by the intersetions of a olletion of sets does not by itself help; anygraph an be de�ned in this way. 2



for approximating maximum weight independent sets in ordered graphs.2 We then desribea similar algorithm alled the loal ratio opportunity ost algorithm, based on ideas from theresoure alloation algorithms of Bar-Noy et al. [4℄. Both algorithms produe the same output,but the �rst has a more iterative struture and is easier to implement while the seond has amore reursive struture and is easier to analyze.These opportunity ost algorithms distinguish themselves from the straightforward greedyalgorithm by taking into aount the ost of exluding previously onsidered neighbors of a hosennode. Sine this aounting requires propagating information only between neighbors, it inreasesthe running time by at most a small onstant fator, and yet in many ases produes a greatimprovement in the approximation ratio. The quality of the approximation depends on the loalstruture of the ordered input graph G. For eah node v in G, we examine all of its suessors(adjaent nodes that appear later in the ordering). The maximum size of any independent setamong v and its suessors is alled the direted loal independene number at v; we will write itas �(v). The maximum value of �(v) over all nodes in the graph will be written as �(G),3 andis the direted loal independene number of G. Our algorithms approximate a maximum weightindependent set to within a fator of �. By omparison, the greedy algorithm approximates amaximum weight independent set within a ratio of the maximum size of any independent subsetof both the predeessors and the suessors of any node, whih in general an be muh largerthan � (see Setion 2).These new approximation results are useful only if we an exhibit interesting lasses of graphsfor whih � is small. Graphs with � = 1 have been extensively studied in the graph theory liter-ature; these are known as hordal graphs, and are preisely those graphs that an be representedas intersetion graphs of subtrees of a forest, a lass that inludes both trees and interval graphs(more details are given in Setion 3.1). We give additional results showing how to ompute upperbounds on � for more general lasses of graphs in Setions 3.2 and 3.3.Among these tools for bounding �, one of partiular interest to our hypothetial ombinatorialautioneer is the following generalization of the fat that intersetion graphs of subtrees have �equal to one. Suppose that we have an objet graph whose nodes are objets and in whih anedge exists between any two objets that are relevant to eah other in some way. (In the arexample, there might be an edge between a wheel and its axle but not between a wheel and thehood ornament.) We demand that the objets in eah bid be germane in the sense that theymust form a onneted node subset of the objet graph. For many sparse objet graphs, theintersetion graph of all onneted sets of verties an be ordered so that a later set intersetsan earlier set only if it intersets a \frontier set" that may be muh smaller than the earlier set.It is immediate that � for the intersetion graph is bounded by the size of the largest frontierset (more details are given in Lemma 8). Examples of suh graphs are those of low treewidth(Theorem 9) and planar graphs (Corollary 10).In Setion 4 we show how to handle more omplex onstraints on aeptable sets of bids. Weinvestigate senarios where bids are grouped by bidder, and that eah bidder is limited to somemaximum number of winning bids (an unweighted budget onstraint), or some maximum total ostof winning bids (a weighted budget onstraint). By harging later bids an approximate opportunityost for earlier bids in the same budget groups, we an solve these problems approximately withratio � + 1 with unweighted onstraints and 2� + 3 for weighted onstraints. The results forunweighted budget onstraints an be further generalized for more ompliated onstraints.2These are graphs in whih the nodes have been assigned an order; as we will see in Setion 3.5, the hoie oforder for a given bid graph an have a large e�et on how good an approximation we an get.3Or simply � when G is lear from the ontext. 3



Finally, in Setion 5 we disuss some open problems suggested by the urrent work.2 Simple ombinatorial autionsIn this setion, we desribe our algorithms for approximating the maximum weight independentset problem, the opportunity ost algorithm and the loal ratio opportunity ost algorithm . Bothalgorithms return the same approximation.2.1 The opportunity ost algorithmWe will write u! v if uv 2 E and all u a predeessor of v and v a suessor of u. The set of allpredeessors of u will be written as Æ�(u) and the set of all suessors as Æ+(u).Given a direted ayli graph G0 = (V0; E0) with weights weight(v) for eah v in V , theopportunity ost algorithm, Opost, proeeds in two stages:OC1 Traversing the nodes aording to the topologial order of G0, ompute a value value(u) foreah node u. This value represents an estimate of the gain we expet by inluding u in theindependent set; it is omputed by taking the weight of u and subtrating o� an opportunityost onsisting of the values of earlier positive-value nodes that onit with u. Formally,let value(u) = weight(u)�Xv!umax(0; value(v)): (1)OC2 Proessing the nodes in reverse topologial order, add any node with non-negative value tothe desired independent set B and disard its predeessors. Formally, letselet(u) = [value(u) � 0℄ ^ 8v 2 Æ+(u) : : selet(v): (2)The output of the algorithm is the set B de�ned as all u for whih selet(u) is true. This setB is learly independent. In Setion 2.3, we examine how lose B is to optimal.2.2 The loal ratio opportunity ost algorithmThe loal ratio tehnique an be used to reursively �nd approximate solutions to optimizationproblems over vetors in Rn , subjet to a set of feasibility onstraints. It was originally developedby Bar-Yehuda and Even [6℄, and later extended by Bafna et al. [2℄, Bar-Yehuda [5℄, and Bar-Noyet al. [4℄.Let w 2 Rn be a weight vetor. Let F be a set of feasibility onstraints. A vetor x 2 Rn isa feasible solution to a given problem (F;w) if it satis�es all the onstraints in F . The w-weightof a feasible solution x is de�ned to be the dot-produt w � x; for r � 1, x is an r-approximationwith respet to (F;w) if r �w �x � w �x�, where x� is a feasible solution maximizing the w-weight.An algorithm is said to have an approximation ratio of r if it always returns an r-approximatesolution.Lemma 1 (Loal Ratio Lemma [6℄) Let F be a set of feasibility onstraints. Let w, w1 andw2 be weight vetors suh that w = w1 + w2. If x is an r-approximation with respet to (F;w1)and (F;w2), then x is an r-approximation with respet to (F;w).4



We now desribe the loal ratio opportunity ost algorithm, LR-Opost. Given a diretedayli graph G0 = (V0; E0) with weights weight(v) for eah v 2 V0, we pass (G0;weight(�)) to thefollowing reursive proedure. This proedure takes as input a graph G and a weight funtion wand proeeds as follows:LR1 Delete all nodes in G with non-positive weight. Let this new graph be G2.LR2 If G2 has no nodes, return the empty set.LR3 Otherwise, selet a node u with no predeessors in G2, and deompose the weight funtionw as w = w1 +w2, where w1(v) = (w(u) if v 2 fug [ Æ+(u),0 otherwise,and w2 = w � w1.LR4 Solve the problem reursively using (G2; w2) as input. Let B2 be the approximation to amaximum weight independent set returned by this reursive all.LR5 If B2 [ fug is an independent set, return B = B2 [ fug. Otherwise, return B = B2.Theorem 2 Opost and LR-Opost return the same approximation to a maximum weightindependent set.Proof: Consider a reursive all C of LR-Opost. Let u be the node that is seleted to beproessed in step LR3. All of u's predeessors in the original graph G0 have either been proessedin a previous step LR3 or deleted in some step LR1. Therefore, the urrent weight of u, w(u), asseen by the reursive all C, is just value(u), as de�ned in step OC1 of Opost. Furthermore,we add node u to our independent set in step OC2 if and only if we add u to our independent setin step LR5.2.3 Approximation ratiosTheorem 3 Opost and LR-Opost return a �(G)-approximation to a maximum weight in-dependent set. Furthermore, there exist weights for whih this bound is tight.Proof: We will prove the result for LR-Opost. The full result follows from Theorem 2.Clearly, the returned set of nodes B is an independent set. By Lemma 1, we need only showthat B is a �-approximation with respet to w1 and w2. We will prove this by indution on thereursion. The base ase of the reursion is trivial, sine there are no positive weight nodes.For the indutive step, assume that B2 is a �-approximation with respet to w2. Then B isalso a �-approximation with respet to w2 sine w2(u) = 0 and B � B2 [ fug.To show that B is a �-approximation with respet to w1, we will derive an upper bound �w(u)on the maximum w1-weight independent set and a lower bound w(u) on the w1-weight of anyu-maximal independent set of nodes. A u-maximal independent set of nodes either ontains u oradding u to it violates the property that it is an independent set. Our w1 performane bound is�w(u)=w(u) = �. Note that only u and its suessor nodes will have a nonzero ontribution tow1-weight. 5



The total weight of a maximum w1-weight independent set is at most �(u)w(u) � �(G)w(u) =�w(u). The total weight of any u-maximal independent set is at least w(u), sine any suh setontains at least one element of u [ Æ+(u), and all suh nodes are assigned weight w(u). Sinethe algorithm always hooses a u-maximal set, its w1 performane bound is �.To show the bound is tight, pik some v that maximizes �(v), and assign it weight 1 and allof its suessors weight 1 � �, where � > 0. Let every other node in G have weight 0. When werun Opost, the value of v will be 1, the value of eah of its suessors will be ��, and the valueof any other node is irrelevant beause it has zero weight. Thus Opost returns a set of totalweight 1 but the maximum weight independent set has total weight at least �(u) � (1� �).2.4 Running timeTheorem 4 The running times of both Opost and LR-Opost are linear in the size of theinput graph G0.Proof: Opost omputes value(v) for eah node v in time proportional to its indegree,and omputes selet(v) for eah node in time proportional to its outdegree, for a total time ofO(jV0j+ jE0j). In the ase of LR-Opost, a reursive all is made at most one for eah node inthe graph, and de�ning w1 and w2 in eah all takes time proportional to the node's outdegree,for a total running time of O(jV0j+ jE0j).3 Properties of �For any v, �(v) is at most the larger of 1 or the outdegree of v. Thus, �(G) is at most the largerof 1 or the maximum degree of G. In many ases we an use the struture of G to get a muhbetter bound.3.1 Graphs with � = 1Graphs with orientations for whih � = 1 an be haraterized ompletely. These are the hordalgraphs, also known as triangulated graphs or rigid iruit graphs. The de�ning property of ahordal graph is that no yle of length 4 or more appears as an indued subgraph. A suintdisussion of these graphs, inluding a variety of haraterizations as well as several examples ofinteresting families of hordal graphs, an be found in [14, pp. 280{281℄. For our purposes themost useful of these haraterizations are stated in the following lemma:Lemma 5 Let G be an undireted graph. Then the following properties of G are equivalent:1. G is hordal.2. G is the intersetion graph of subtrees of a forest.3. G has an ordering G0 for whih the suessors of any node form a lique. Suh an orderingis alled a perfet elimination ordering. Restated in terms of �, G has an ordering G0 forwhih �(G0) = 1.
6



Proof: See [14, pp. 280-281℄.Chordal graphs an be reognized and ordered using a speialized version of breadth-�rstsearh in O(jV j + jEj) time as shown by Rose et al. [32℄, and their maximum ardinality inde-pendent sets an be omputed in O(jV j+ jEj) time as shown by Gavril [13℄. Gavril's algorithmis essentially the same as step OC1 of the opportunity ost algorithm; it hooses all nodes withpositive value and works beause the sets fv : u ! vg for eah u in the independent set form alique overing. However, this algorithm does not deal with weights.Speial ases of graphs with � = 1 inlude trees, interval graphs, and disjoint unions of liques.The last are partiularly nie:Lemma 6 Let G be a disjoint union of liques. Then every orientation G0 of G has �(G0) = 1.Proof: For eah u in G0, Æ+(u) is a lique.3.2 Graphs with larger � valuesFor general graphs, we annot ompute � even approximately. However, we an bound the �values of many graphs using the tools in this setion.Lemma 7 Let G be a direted graph.1. If G = G1 [G2, then �(G) � �(G1) + �(G2).2. If G is a node-indued subgraph of H, then �(G) � �(H).Proof: Let u be a node of G. Let Æ+(u), Æ+1 (u), Æ+2 (u), and Æ+H(u) be the set of all suessorsof u in G, G1, and G2, respetively. Let A be any independent subset of Æ+(u). Then1. jAj � jA \ Æ+1 (u)j+ jA \ Æ+2 (u)j � �(G1) + �(G2), and2. A is an independent subset of Æ+H(u), implying jAj � �(H).Lemma 8 Let G be the intersetion graph of a set system A whose union is O. Let G be orderedby an ordering < suh that for eah A 2 A there exists a \frontier set" SA � U of size at mostk, so that if A < B and A \ B 6= ;, then SA \ B 6= ;. Then �(G) � k. (Note that SA need notbe ontained in A.)Proof: Let B1; : : : ; Bl be some independent set of suessors of A. Under the onditionsof the lemma eah Bi intersets SA. But sine the Bi do not themselves interset, eah mustinterset SA in a distint element. Thus there are at most k of them.The onverse of the lemma does not hold. Instead, its proof shows that the lique overingnumber � of Æ+(A) (de�ned as the minimum size of any set of liques whose union is Æ+(A)) is atmost k, sine the set of all B that interset SA at any partiular element form a lique. Note thatany direted ayli graph in whih �(Æ+(v)) is bounded an be represented as an intersetiongraph with small frontier sets as in Lemma 8,4 in general the independene number of Æ+(v) maybe smaller than the lique overing number.4The trik is to add a new ommon element to all members of eah lique, and let SA be the set of all suh newelements for the liques that over Æ+(A). 7



When A onsists of onneted node subsets of some graph H, we an obtain good orderingsof the intersetion graph G of A by exploiting the struture of H.We start by reviewing the de�nition of treewidth. A tree deomposition of an undireted graphH = (V;E) onsists of a tree T and a family of sets V = fVtg where t ranges over nodes of T ,satisfying the following three properties:1. St2T Vt = V .2. For every edge uv in E, there is some Vt that ontains both u and v.3. If t2 lies on the unique path from t1 to t3 in T , then Vt1 \ Vt3 � Vt2 .The width of a tree deomposition (T;V) is max jVtj � 1. The treewidth tw(H) of a graph His the smallest width of any tree deomposition of H.Theorem 9 If G is an intersetion graph of onneted node subsets A of some graph H withtreewidth k, then there is an orientation G0 of G with �(G0) � k+1. Given A = fAig and a treedeomposition (T;V = fVtg) of H, this orientation an be omputed in time O(Pi jAij + jT j +Pt jVtj), whih is linear in the size of the input.Proof: Let (T;V) be a tree deomposition of H with width k. We will use this treedeomposition to onstrut an ordering of the onneted node subsets of H, with the propertythat if A < B then either A \ B = ; or B intersets some frontier set SA with at most k + 1elements. The full result then follows from Lemma 8.Choose an arbitrary root r for T , and let t1 � t2 if t1 is an anestor of t2 in the resultingrooted tree. Extend the resulting partial order to an arbitrary linear order. For eah onnetednode subset A of H, let tA be the greatest node in T for whih VtA intersets A. Given twoonneted node subsets A and B of H, let A < B if tA < tB and extend the resulting partialorder to any linear order.Ordering T an be done in O(jT j) time using depth �rst searh. We an then ompute andthe maximum node in T ontaining eah node of H in time O(Pt Vt) by onsidering eah Vt inorder. The �nal step of ordering the Ai in the given set system S takes O(Pi jAij) time, sinewe must examine eah element of eah Ai to �nd the maximum one. The total running time isthus linear in the size of the input.Now suppose A � B in this ordering. We will show that any suh B intersets VtA , and thusthat VtA is our desired frontier set SA. There are two ases.If tA = tB , we are done.The ase tA < tB is more ompliated. We will make heavy use of a lemma from [31℄, whihonern the e�et of removing some node t from T . Their Lemma 2.3 implies that if x; x0 are notin Vt, then either x and x0 are separated in H by Vt or x and x0 are in the same branh (onnetedomponent) of T � t.Let p be the parent of tA (whih exists beause tA is not the greatest element in the treeordering). We have A \ Vp = ; sine p > tA. Sine A is a onneted set, it annot be separatedwithout removing any of its nodes; thus by Lemma 2.3 every element of A is in the same branhof T � p, whih onsists preisely of the subtree of T rooted at tA.Now B ontains at least one node x in the vertex set of an element of the subtree rooted attA, and at least one node x0 in VtB , whih is not in this subtree beause tB > tA. So by Lemma2.3 of [31℄, either one of x; x0 is in VtA or B is separated by VtA . In the latter ase B intersetsVtA sine B is also onneted.Applying Theorem 9 to planar graphs gives:8



Corollary 10 If G is the intersetion graph of a family A of onneted node subsets of a planargraph H with n nodes, then there is an orientation G0 of G with �(G0) = O(pn). Given H, adata struture of size O(n) an be preomputed in time O(n logn) that allows this orientation G0to be omputed for any A = fAig in time O(Pi jAij).Proof: Reed [30℄ gives a reursive O(n logn) algorithm for omputing tree deompositions ofonstant-treewidth graphs based on a linear time algorithm for �nding approximate separators forsmall node subsets. Replaing this separator-�nding subroutine with the linear time algorithm ofLipton and Tarjan [23℄ gives an O(n log n) time algorithm for omputing a tree deomposition of aplanar graph. Sine eah separator has size at most k = O(pn), the resulting tree deompositionhas width at most 4k = O(pn) by Theorem 1 of [30℄.Sine all we need to ompute a good ordering of A is the ordering of the n nodes, we anompute this ordering as desribed in the proof of Theorem 9 and represent it in O(n) spae byassigning eah node an index in the range 1 to n. Ordering A then takes linear time as desribedin the proof of Theorem 9.3.3 ExamplesApplying the results of Setions 3.1 and 3.2 gives:1. A linear-time algorithm for �nding a maximum weight independent set of an interval graph,sine �(G) = 1 by Lemma 5, and sine hordal graphs an be reognized and ordered inlinear time using the work of Rose et al. [32℄.While the maximum independent set problem is easily solved for this ase (for example, byusing the linear time interval graph reognition algorithm of Hsu and Ma [19℄ followed by asimple appliation of dynami programming) this is an example of how our general methodyields good algorithms as speial ases.2. As another speial ase, a 2-approximation algorithm for interval seletion of Bermanand DasGupta [7℄. Here intervals are partitioned into groups and we must hoose non-overlapping intervals with at most one per group. The bid graph G is of the form G1 [G2where G1 is an interval graph and G2 is a disjoint union of liques, one for eah group. Thus�(G) = 2 by Lemmas 5, 6, and 7.3. A 3-approximation algorithm for \double aution" interval seletion where eah interval hasboth a seller and a buyer, and at most one interval per seller or buyer may be seleted.This is the same as the previous ase exept the graph is now G1 [G2 [G3 where G2 andG3 are both disjoint unions of liques.4. In general, a mehanism for taking any bid graph with � = k and adding up to m suhunique-seletion onstraints to get a (k +m)-approximation algorithm by repeated appli-ations of Lemmas 6 and 7. So for example we get a 3-approximation algorithm for max-imum weight three-dimensional mathing and a 4-approximation algorithm for autioningo� trats of undeveloped land spanning intervals where eah trat must be aeptable toa seller who provides it, a builder who will develop it, and a buyer who will ultimatelypurhase both the land and the buildings developed on it.5. An algorithm to k-approximate a maximum weight independent set of any subgraph of ak-dimensional retangular grid. Orient eah edge to leave the point whose oordinates havea smaller sum, giving � � k. 9



6. A linear-time algorithm for 2-approximating a maximum weight independent set of theintersetion graph of intervals on a yle. This follows from Lemma 8: order onnetednode subsets by inlusion, extend to a linear order �, and observe that if A � B and Aintersets B then B intersets one of A's two endpoints.57. An algorithm for intersetion graphs of bounded-height retangles in a disrete 2D grid.Order the retangles by their largest x-oordinate, and make the rightmost grid points ofeah retangle be its frontier set in the sense of Lemma 8. If eah retangle is at most htall, there are at most h grid points in eah frontier. This generalizes in the obvious wayto higher dimensions given bounds on all but one of the oordinates, in whih ase theapproximation ratio beomes the produt of the bounds.3.4 Hardness of omputing �The diÆulty of even approximating the independene number of a graph extends to the diretedloal independene number.Theorem 11 Any algorithm that an approximate �(G) for an n-node direted ayli graph Gwith a ratio of f(n) an be used to approximate the size �(H) of a maximum independent set ofan undireted n-node graph H with ratio f(n+ 1). Thus by H�astad's bound on approximating amaximum lique [16℄, we annot approximate � by O(n1��) unless P = NP .Proof: Given an undireted n-node graph H, onstrut an (n + 1)-node direted ayligraph G by (a) direting the edges of H in any onsistent order, and (b) adding a new sourenode s to H with edges from s to every node in H.Let I be an independent set in H. Then every node in I is a suessor of s in G, andfurthermore these nodes are all independent. It follows that �(G) � �(s) � �(H).Conversely, if I 0 is an independent set of suessors of some node v in H, it annot ontain s(sine s is not a suessor of any node), and thus I 0 is also an independent set in H. So we have�(H) � �(G).3.5 E�ets of node orderingThe performane of the opportunity ost algorithm is strongly sensitive to the order in whih thenodes are proessed, as this a�ets the value of �(u) for eah node u. For many of the examplesgiven in the Setion 3.3, a good ordering is provided by the struture of the problem. But whathappens in a general graph?Theorem 12 For any graph G with given weights, there exists an orientation G0 of G for whihboth Opost and LR-Opost output a maximum independent set of G.Proof: Let A be any independent set in G. Choose the ordering so that all nodes in Apreede all nodes not in A. Then for any u 2 A, u has no predeessors in the oriented graph andvalue(u) = weight(u).Let A0 be the independent set omputed by the algorithm. If u is in A but not A0, it musthave a suessor v in A0 �A with non-negative value. Sine the value of eah v is its weight less5One an do better by breaking the yle to redue it to a standard interval graph problem (see, for example,the approah taken by [4℄), but the 2-approximation shows how one an still do reasonably well with our generalalgorithms Opost and LR-Opost. 10



the weight of all its neighbors in A, the total weight of all elements of A0�A must exeed the totalweight of all elements in A � A0, and we have weight(A0) = weight(A0 � A) + weight(A0 \ A) �weight(A�A0) + weight(A0 \A) = weight(A).In a sense what Theorem 12 shows is that �nding a good ordering of a general graph isequivalent to solving the maximum weight independent set problem. This is not surprising sineevaluating �(u) for even a single node u requires solving this problem. It follows that to get smallapproximation ratios we really do need to exploit some speial property of the given graph.In the other diretion, we an show that there exist orderings that are not very good:Theorem 13 If all nodes in a graph G have distint weights, orienting G in order of dereas-ing weight auses Opost and LR-Opost to return the same independent set as the greedyalgorithm.Proof: We will prove the result for Opost; by Theorem 2 the same result holds forLR-Opost.Let � order the nodes in order of dereasing weight. Let us show by indution on � that ifthe greedy algorithm hooses a node v, then value(v) = weight(v); but if the greedy algorithmdoes not hoose v, then value(v) < 0. Suppose we are proessing some node v and that thisindution hypothesis holds for all nodes previously proessed. If the greedy algorithm piks v,then all v's predeessors were not hosen and have negative value, and value(v) = weight(v).If the greedy algorithm does not pik v, it is beause it hose some u ! v; now value(v) �weight(v)� value(u) = weight(v)� weight(u) < 0.Sine the only nodes with non-negative weights are those hosen by the greedy algorithm,Opost selets them as its output.4 Autions with budget onstraintsConsider the following bidding senarios:1. A bidder whose ar has broken down wants to buy either a new engine, a new ar, or anumbrella and a taxi ride home, but doesn't partiularly are whih. However, she has nointerest in winning more than one of these bids.2. Another bidder wants to buy at most three 1968 Volkswagen Beetle hood ornaments, butshe would like to bid on all that are available so as not to miss any.3. Yet another bidder has only $100 in ash, but would like to plae multiple bids totalingmore than $100, with the understanding that she an only win bids up to her budget.All of these are examples of budget onstraints, in whih bids in some group onsume a ommonsare resoure. We would like to extend our algorithms to handle suh onstraints, whih arenatural in real-world bidding situations.The �rst senario is an example of a 1-of-n onstraint, where at most one of a set of n bids anbe aepted. This speial ase an be handled by modifying G by forming a lique out of all bidsin eah set Si; under the assumption that the Si are disjoint, this inreases � by at most 1 (usingLemmas 6 and 7). The seond senario depits a more general k-of-n onstraint. Suh onstraintsare handled by extending our algorithms to aount for the possible revenue loss from bids that11



annot be seleted beause the budget onstraint has been exeeded. Again, the approximationratio rises by 1. We refer to both 1-of-n and k-of-n onstraints as unweighted budget onstraints,as eah bid onsumes a single unit of the budget.Weighted budget onstraints, exempli�ed by the third senario, are more ompliated. Withsuh onstraints, we must ensure that the sum of the weights of aepted bids in some group Sis at most some bound b. A ompliation arises beause a maximal allowed set of bids mightonly �ll half of a budget limit. With some additional modi�ations to our algorithms, we get aperformane bound of 2� + 3.4.1 Unweighted budget onstraintsSuppose the bids are partitioned into groups S1; : : : ; Sr and that no more than ki bids may beseleted from Si, for 1 � i � r. For eah bid u, let g(u) denote the index of the group to whih ubelongs and let Su = Sg(u) and ku = kg(u).Unweighted-Opost is an extension of Opost to handle unweighted budget onstraints.It has a similar two-step struture.In the �rst step, like OC1, we traverse the nodes in topologial order and ompute a valuefor eah node. We must extend the de�nition of value for eah node to aount for the possiblerevenue loss from previously proessed bids that may not be seleted in the seond step beauseof the budget onstraint:value(u) = weight(u)�Xv!umax(0; value(v))� 1ku � Xv2Su�fug;v<umax(0; value(v)); (3)where the notation v < u means that v has already been proessed (before u). Note that theinlusion of u in the set of winning bids does not neessarily prelude previously proessed bidsin Su from also being seleted|they may also be seleted if the budget ku allows. The oeÆient1ku sales the opportunity ost to aount for this fat.In the seond step, like OC2, we traverse the bid graph in reverse topologial order, seletingnodes of positive value whose addition to those already seleted does not violate the independeneor budget onstraints.Unweighted-LR-Opost solves the same problem using the loal ratio tehnique. It followsthe same struture as LR-Opost. We begin by deleting all non-positive weight nodes from thegraph. If any nodes remain, we selet a node u with no predeessors, and deompose the weightfuntion into w = w1 + w2. This time, the deomposition must aount for bids that are in thesame budget group. We de�new1(v) = 8><>:w(u) if v 2 fug [ Æ+(u),1kuw(u) if v 2 Su � fug,0 otherwise,and reursively solve the problem using w2 as the weight funtion. After the reursive all, wemust deide if we should add u to the set of winning bids B2. In LR-Opost, we added u to B2if and only if B2 [ fug was an independent set. In this algorithm, we must also ensure that thebudget onstraints are satis�ed before adding u to B2. We say that a set of bids is feasible if theyform an independent set and the budget onstraints are satis�ed.Theorem 14 Given a direted bid graph G, a partition of the nodes of G into nonempty subsetsS1; : : : ; Sr, and an unweighted budget onstraint ki for eah Si,12



1. Unweighted-Opost and Unweighted-LR-Opost return the same approximation toa revenue maximizing set of bids.2. Unweighted-Opost and Unweighted-LR-Opost (�(G)+1)-approximate an optimalset of bids.3. Unweighted-Opost and Unweighted-LR-Opost run in time linear in the size of G.Proof: The proof that both algorithms return the same approximation is similar to theproof of Theorem 2.The proof of the approximation ratio follows the same struture as the proof of Theorem 3.We prove the result for Unweighted-LR-Opost. By Lemma 1, we need only show that thereturned set of bids B is a (� + 1)-approximation with respet to w2 and w1. We do this usingindution on the reursion. The fat that B is a (�+1)-approximation with respet to w2 followstrivially from the indutive assumption.In the ase of w1, we will derive an upper bound U on the maximum w1-weight of a set offeasible bids and a lower bound L on the w1-weight of any u-maximal set of bids. A u-maximalset of bids either ontains u or adding u to it would violate the feasibility onstraints. In the aseof a set of feasible bids, its total w1-weight is at most �(u)w(u)+ kukuw(u) � w(u)(�+1) = U , sinethe only nonzero ontribution to w1-weight omes from Æ+(u) and Su. In the ase of a u-maximalset of bids, if u annot be added to the set, then either (1) a suessor of u is already in the set,in whih ase the total w1-weight is at least w(u), or (2) the budget onstraint is exeeded, inwhih ase the total w1-weight is at least w(u). Therefore, the w1-weight of these bids is at leastw(u) and the w1 performane bound isUL = w(u)(� + 1)w(u) = � + 1:The proof of the running time is similar to the proof of Theorem 4. All of the steps thatUnweighted-Opost and Unweighted-LR-Opost share with Opost and LR-Oposttake linear time. Unweighted-Opost adds the ost of omputing the last term in (3). StoringPv2Si max(0; value(v)) in a variable �Si for eah Si allows this term to be omputed in timeO(1) for eah node, with an additional O(1) ost per node to update the appropriate Si. Thesame tehnique allows budget onstraints to be tested in O(1) time per node during the seondstep. Thus the additional time is linear.The orresponding modi�ation toUnweighted-LR-Opost similarly adds only linear time.Rather than updating the weight of eah node v before eah reursive all, we will ompute the\urrent" weight of eah node v as it is required, subtrating o� the total weight �Sv of allpreviously-proessed nodes in Sv as in Unweighted-Opost.4.2 Overlapping unweighted onstraintsThe analysis in Setion 4.1 assumes that the budget onstraints partition the bids. For someappliations (e.g., bids involving mathing up buyers with sellers), we may have overlappingonstraints. Overlapping onstraints may also be used to handle bids for idential items inlimited supply, by grouping all bids asking for opies of the same item together. The algorithmsdesribed above an be generalized to handle overlapping onstraints.Suppose we have a family of r sets of bids S = fS1; : : : ; Srg, that eah bid appears in at mostt of these sets, and that at most ki bids may be aepted from set Si.13



In Overlapping-Unweighted-Opost, when omputing the value of a node u, we need toaount for the possible revenue loss from nodes in eah set that u belongs to:value(u) = weight(u)�Xv!umax(0; value(v)) � X1�i�r;u2Si0� 1ki Xv2Su;v<umax(0; value(v))1A :The rest of the algorithm is the same as Unweighted-Opost.In Overlapping-Unweighted-LR-Opost, the only hange from Unweighted-LR-Op-ost is in the deomposition of the weight funtion. We deompose it asw1(v) = 8><>:w(u) if v 2 fug [ Æ+(u),P1�i�r;u;v2Si 1kiw(u) if there exist Si ontaining both u and v,0 otherwise.Theorem 15 Given a direted bid graph G = (V;E), a family of nonempty node subsets S1; : : : ; Sr,where eah node appears in at most t of the Si, and an unweighted budget onstraint ki for eahSi,1. Overlapping-Unweighted-Opost and Overlapping-Unweighted-LR-Opost re-turn the same approximation to a revenue maximizing set of bids.2. Overlapping-Unweighted-Opost and Overlapping-Unweighted-LR-Opost(�(G) + t)-approximate an optimal set of bids.3. Overlapping-Unweighted-Opost and Overlapping-Unweighted-LR-Opost runin time O(jV jt+ jEj)Proof: Similar to the proof of Theorem 14. The additional O(jV jt) term omes from havingto apply up to t budget onstraints to eah node; sine Pi jSij � jV jt, this term also overs theost of reading the Si from the input and initializing the variables for eah subset.4.3 Weighted budget onstraintsSuppose that bids are partitioned into groups S1; : : : ; Sr and that the total value of the winningbids from group i an be no more than bi. For eah bid u, let g(u) denote the index of the groupto whih u belongs and let Su = Sg(u) and bu = bg(u).This ase is more ompliated than the unweighted ase. The diÆulty arises when estimatinga lower bound on the w1-weight of a u-maximal set of bids S. If u annot be added to the setbeause the budget onstraint will be exeeded, the w1-weight of S an be as small as �, ifw1(u) = bu.We will desribe hanges required to LR-Opost to handle this ase. Corresponding hangesan be made to Opost. We will run variations of the algorithm twie, one for the heavy bidsv with w(v) > 12bv and one for the light bids v with w(v) � 12bv. We then return the better ofthe two solutions.In Heavy-Weighted-LR-Opost, we put an unweighted budget onstraint of 1 on eahbidder and run Unweighted-LR-Opost.Lemma 16 Heavy-Weighted-LR-Opost (�+1)-approximates an optimal set of heavy bids.14



Proof: Sine eah heavy bid onsumes more than half a bidder's budget, eah bidder anwin at most one bid. This is just a simple unweighted budget onstraint and an be solved asdesribed in Setion 4.1 for a performane bound of � + 1.In Light-Weighted-LR-Opost, when deomposing the weight funtion, we setw1(v) = 8><>:w(u) if v 2 fug [ Æ+(u),2buw(v)w(u) if v 2 Su � fug,0 otherwise.Before adding u to the winning set of bids B2, we must ensure that it does not onit with otherbids in B2 and that the weighted budget onstraint is not violated. The rest of the algorithm isidential to LR-Opost.Lemma 17 Light-Weighted-LR-Opost (� + 2)-approximates an optimal set of light bids.Proof: This proof uses the same struture and notation as the proof of Theorem 14. Anupper bound U on the w1-revenue of any feasible set of bids is w(u)(� + 2). With regards to au-maximal set of bids, if u annot be added to the set beause the budget onstraint bu will beexeeded, the existing bids in the set must have weight at least bu=2, sine w(u) � bu=2. A lowerbound L on the w1-revenue of any u-maximal set of bids is therefore w(u). The performanebound of this algorithm is UL = � + 2, as laimed.Theorem 18 Given a direted bid graph G, a partition of the nodes of G into nonempty subsetsS1; : : : ; Sr, and a weighted budget onstraint bi for eah Si,1. Weighted-Opost and Weighted-LR-Opost return the same approximation to a rev-enue maximizing set of bids.2. Weighted-Opost and Weighted-LR-Opost (2�(G)+3)-approximate an optimal setof bids.3. Weighted-Opost and Weighted-LR-Opost run in time linear in the size of G.Proof: The sum of the optimal revenues for the heavy and light bids is at least equal to theoptimum revenue among all bids. From Lemmas 16 and 17, the better of the two solutions willbe within a fator of 2� + 3 of the optimum for the general problem.For the running time, observe that deomposing the bids into heavy and light bids takes lineartime, that Heavy-Weighted-Opost and Heavy-Weighted-LR-Opost are equivalent toUnweighted-Opost andUnweighted-LR-Opost and thus take linear time by Theorem 14,and that Light-Weighted-Opost and Light-Weighted-LR-Opost an be made to run inlinear time using tehniques similar to those used for Unweighted-Opost and Unweighted-LR-Opost.5 Further ResearhThis paper opens up several diretions for further researh. An immediate open problem iswhether overlapping weighted budget onstraints an be proessed as eÆiently as their un-weighted ounterparts are proessed in Theorem 15.15
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