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Abstract

PAC learning of unrestricted regular languages is long known to be a difficult problem. The
class of shuffle ideals is a very restricted subclass of regular languages, where the shuffle ideal
generated by a stringu is the collection of all strings containingu as a subsequence. This funda-
mental language family is of theoretical interest in its ownright and provides the building blocks
for other important language families. Despite its apparent simplicity, the class of shuffle ideals
appears quite difficult to learn. In particular, just as for unrestricted regular languages, the class is
not properly PAC learnable in polynomial time if RP6= NP, and PAC learning the class improperly
in polynomial time would imply polynomial time algorithms for certain fundamental problems in
cryptography. In the positive direction, we give an efficient algorithm for properly learning shuffle
ideals in the statistical query (and therefore also PAC) model under the uniform distribution.
Keywords: PAC Learning, Statistical Queries, Regular Languages, Deterministic Finite Au-
tomata, Shuffle Ideals, Subsequences

1. Introduction

Inferring regular languages from examples is a classic problem in learning theory. A brief sampling
of areas where various automata show up as the underlying formalism include natural language
processing (speech recognition, morphological analysis), computational linguistics, robotics and
control systems, computational biology (phylogeny, structural pattern recognition), data mining,
time series and music (Koskenniemi, 1983; de la Higuera, 2005; Mohri, 1996; Mohri et al., 2002;
Mohri, 1997; Mohri et al., 2010; Rambow et al., 2002; Sproat et al., 1996). Thus, developing
efficient formal language learning techniques and understanding their limitations is of a broad and
direct relevance in the digital realm.

Perhaps the currently most widely studied theoretical model of learning is Valiant’s PAC model,
which allows for a clean, elegant theory while retaining some measure of empirical plausibil-

c©2013 Dana Angluin, James Aspnes, Sarah Eisenstat and Aryeh Kontorovich.



ANGLUIN , ASPNES, EISENSTAT AND KONTOROVICH

ity (Valiant, 1984). Since PAC learnability is characterized by finite VC-dimension and the concept
class ofn-state deterministic finite state automata (DFA) has VC-dimensionΘ(nlogn) (Ishigami
and Tani, 1997), the PAC learning problem is solved, in an information theoretic sense, by con-
structing a DFA onn states consistent with a given labeled sample. Unfortunately, as shown in
the works of Angluin (1978), Gold (1978) and Pitt and Warmuth(1993) under standard complexity
assumptions, finding small consistent automata is a computationally intractable task. Furthermore,
attempts to circumvent the combinatorial search over automata by learning with a different repre-
sentation class are thwarted by cryptographic hardness results. The papers of Pitt and Warmuth
(1990) and Kearns and Valiant (1994) prove the existence of small automata and “hard” distribu-
tions over{0,1}n so that any efficient learning algorithm that achieves a polynomial advantage over
random guessing will break various cryptographic hardnessassumptions.

In a modified model of PAC, and with additional structural assumptions, a class of probabilistic
finite state automata was shown by Clark and Thollard (2004) and Palmer and Goldberg (2007) to
be learnable. If the target automaton and sampling distribution are assumed to be “simple”, efficient
probably exact learning is possible (Parekh and Honavar, 2001). When the learner is allowed to
make membership queries, it follows by the results of Angluin (1987) that DFAs are learnable in
this augmented PAC model.

The prevailing paradigm in regular language learning has been to make structural regularity as-
sumptions about the family of languages and/or the samplingdistribution in question and to employ
a state merging heuristic. Indeed, over the years a number ofclever and sophisticated combina-
torial approaches have been proposed for learning DFAs. Typically, an initial automaton or prefix
tree consistent with the sample is first created. Then, starting with the trivial partition with one
state per equivalence class, classes are merged while preserving an invariant congruence property.
The automaton learned is obtained by merging states according to the resulting classes. Thus, the
choice of the congruence determines the algorithm and generalization bounds are obtained from
the structural regularity assumptions. This rough summarybroadly characterizes the techniques of
Angluin (1982), Oncina and Garcı́a (1992), Ron et al. (1998), Clark and Thollard (2004), Parekh
and Honavar (2001) and Palmer and Goldberg (2007), and untilrecently this appears to have been
the only general purpose technique available for learning finite automata.

More recently, Kontorovich et al. (2006), Cortes et al. (2007) and Kontorovich et al. (2008)
proposed a substantial departure from the state merging paradigm. Their approach was to embed
a specific family of regular languages (the piecewise-testable ones) in a Hilbert space via a kernel
and to identify languages with hyperplanes. A unifying feature of this methodology is that rather
than building an automaton, the learning algorithm outputsa classifier defined as a weighted sum
of simple automata. In subsequent work by Kontorovich and Nadler (2009) this approach was
extended to learning general discrete concepts. These results, however, provided only margin based
generalization guarantees, which are weaker than true PAC bounds.

A promising research direction is to investigate the question of efficient PAC learnability for
restricted subclasses of the regular sets. One approach is to take existing efficient PAC algorithms
in other domains, for example, for classes of propositionalformulas over the boolean cube{0,1}n,
or classes of geometric concepts such as axis-aligned boxesin R

n, discretize the representation if
necessary, and consider the resulting sets of strings to be formal languages. If the languages have
finite cardinality, they are trivially regular, although they may or may not have succinct deterministic
finite state acceptors.
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Figure 1: The canonical DFA for recognizing the shuffle idealof u= aaboverΣ = {a,b,c}, which
accepts precisely those strings that containu as a subsequence.

Another approach is to consider classes of regular languages defined by structural restrictions on
the automata or grammars that accept or generate them. Ergün et al. (1995) consider the learnability
of bounded-width branching programs, and show that there isan efficient algorithm to PAC learn
width-2 branching programs, though not properly, and an efficient proper PAC learning algorithm
for width-2 branching programs with respect to the uniform distribution. They also show that PAC
learning width-3 branching programs is as hard as PAC learning DNF formulas, a problem whose
status remains open.

In this paper we study the PAC learnability of another restricted class of regular languages, the
shuffle ideals. The shuffle ideal generated by a stringu is the collection of all strings containing
u as a (not necessarily contiguous) subsequence (see Figure 1for an illustration). Despite being a
particularly simple subfamily of the regular languages, shuffle ideals play a prominent role in formal
language theory. Their boolean closure forms the importantfamily known aspiecewise-testable
languages, defined and characterized by Simon (1975). The rich structure of this language family
has made it an object of intensive study, with deep connections to computability, complexity theory,
and semigroups (see the papers of Lothaire (1983) and Kĺımaand Polák (2008) and the references
therein). On a more applied front, the shuffle ideals capturesome rudimentary phenomena in human
language morphology (Kontorovich et al., 2003).

In Section 3 we show that shuffle ideals of known length are exactly learnable in the statis-
tical query model under the uniform distribution, though not efficiently. Permitting approximate
learning, the algorithm can be made efficient; this in turn yields efficient proper PAC learning un-
der the uniform distribution. On the other hand, in Section 4we show that the shuffle ideals are
not properly PAC learnable under general distributions unless RP=NP. In Section 5 we show that a
polynomial time improper PAC learning algorithm for the class of shuffle ideals would imply the
existence of polynomial time algorithms to break the RSA cryptosystem, factor Blum integers, and
test quadratic residuosity. These two negative results areanalogous to those for general regular
languages represented by deterministic finite automata.

2. Preliminaries

Throughout this paper, we consider a fixed finite alphabetΣ, whose size will be denoted bys. We
assumes≥ 2. The elements ofΣ∗ will be referred to asstringswith their length denoted by|·|; the
empty string isλ. The concatenation of stringsu1 andu2 is denoted byu1 ·u2 or u1u2. The string
u is aprefix of a stringv if there exists a stringw such thatv= uw. Similarly, u is asuffixof v if
there exists a stringw such thatv= wu. We use exponential notation for repeated concatenation of
a string with itself, that is,un is the concatenation ofn copies ofu.

Define the binary relation⊑ onΣ∗ as follows:u⊑ v holds if there is a witness~i = (i1 < i2 < .. . <
i|u|) such thatvi j = u j for all j ∈ [|u|]. When there are several witnesses foru⊑ v, we may partially
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order them coordinate-wise, referring to the unique minimal element as theleftmostembedding.
The unique maximal element is therightmostembedding. Ifu⊑ v then theleftmost spanof u in v
is the shortest prefixv1 of v such thatu⊑ v1 and therightmost spanof u in v is the shortest suffixv2

of v such thatu⊑ v2.
Formally, the (principal)shuffle idealgenerated byu∈ Σℓ is the regular languageX(u) = {x∈ Σ∗ : u⊑ x}= Σ∗u1Σ∗u2Σ∗ . . .Σ∗uℓΣ∗

(an example is given in Figure 1). The shuffle ideal of stringu consists of all stringsv over the given
alphabet such thatu⊑ v. The termshuffle idealcomes from algebra (Lothaire, 1983; Păun, 1994)
and dates back to the paper of Eilenberg and Mac Lane (1953).

The following lemmas will be useful in the sequel. The first isimmediate from the definitions;
the second formalizes the obvious method of determining whether u ⊑ v and finding a leftmost
embedding if so.

Lemma 1 Suppose u= u1u2u3 and v= v1v2v3 are strings such that u⊑ v and v1 is the leftmost
span of u1 in v and v3 is the rightmost span of u3 in v. Then u2 ⊑ v2.

Lemma 2 Evaluating the relation u⊑ x is feasible in time O(|x|).

Proof If u = λ, thenu is certainly a subsequence ofx. If u = au′ wherea∈ Σ, we search for the
leftmost occurrence ofa in x. If there is no such occurrence, thenu is certainly not a subsequence
of x. Otherwise, we writex= yax′, wherey contains no occurrence ofa; thenu is a subsequence of
x if and only if u′ is a subsequence ofx′, so we continue recursively withu′ andx′. The total time
for this algorithm isO(|x|).

We assume a familiarity with the basics of the PAC learning model, as defined in the textbook
of Kearns and Vazirani (1994). To recap, consider the instance spaceX = Σ∗, concept classC ⊆ 2X ,
and hypothesis classH ⊆ 2X . An algorithmL is given access to a labeled sampleS= (Xi,Yi)

m
i=1,

where theXi are drawn iid from some unknown distributionP over X andYi = f (Xi) for some
unknowntarget f∈ C , and produces ahypothesis h∈ H . We say thatL efficiently PAC learnsC if
for anyε,δ > 0 there is anm0 ∈ N such that for allf ∈ C and all distributionsP, the hypothesishm

generated byL based on a sample of sizem≥ m0 satisfies

Pm[P({x∈ X : hm(x) 6= f (x)})> ε]< δ;

moreover, we require that bothm0 andL ’s runtime be at most polynomial inε−1, δ−1 and the sizes
of f andXi. The learning is said to beproper if H = C and improperotherwise. If the learning
algorithm achievesε = 0, the learning is said to beexact(Bshouty, 1997; Bshouty et al., 2005).

Most learning problems can be cleanly decomposed into a computational and an information
theoretic component. The information theoretic aspects oflearning automata are well understood.
As mentioned above, the VC-dimension of a collection of DFAsgrows polynomially with maximal
number of states, and so any small DFA consistent with the training sample will, with high proba-
bility, have small generalization error. For shuffle ideals, an even simpler bound can be derived. If
n is an upper bound on the length of the stringu∈ Σ∗ generating the target shuffle ideal, then our
concept class contains exactly

n

∑
ℓ=0

|Σ|ℓ = O(|Σ|n)
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members. Thus, with probability at least 1−δ, any shuffle ideal consistent with a sample of sizem
will achieve a generalization error of

O

(

nlog|Σ|− logδ
m

)

.

Hence, the problem of properly PAC learning shuffle ideals has been reduced to finding one
that is consistent with a given sample. This is shown to be computationally hard under adversarial
distributions (Theorem 7), but feasible under the uniform one (Theorem 6). Actually, our positive
result is somewhat stronger: since we show learnability in the statistical query (SQ) model of Kearns
(1998), this implies a noise tolerant PAC result. In addition, in Section 5 we show that the existence
of a polynomial time improper PAC learning algorithm for shuffle ideals would imply the existence
of polynomial time algorithms for certain cryptographic problems.

3. SQ Learning Under the Uniform Distribution

The main result of this section is that shuffle ideals are efficiently PAC learnable under the uniform
distribution. To be more precise, we are dealing with the instance spaceX = Σn endowed with
the uniform distribution, which assigns a weight of|Σ|−n to each element ofX . Our learning
algorithm is most naturally expressed in the language ofstatistical queries(Kearns, 1998; Kearns
and Vazirani, 1994). In the original definition, a statistical queryχ is a binary predicate of a random
instance-label pair, and the oracle returns the valueEχ, additively perturbed by some amount not
exceeding a specified tolerance parameter. We will considera somewhat richer class of queries.

3.1 Constructing and Analyzing the Queries

For u∈ Σ≤n anda∈ Σ, we define the queryχu,a(·, ·) by

χu,a(x,y) =

{

0, u 6⊑ x′

y(1{σ=a}−1{σ6=a}/(s−1)), u⊑ x′

wherex′ is the prefix ofx of length(n−1), σ is the symbol inx following the leftmost embedding
of u and1{π} represents the 0-1 truth value of the predicateπ (recall thats= |Σ|). Our definition of
the queryχu,a is legitimate because (i) it can be efficiently evaluated (Lemma 2) and (ii) it can be
expressed as a linear combination ofO(1) standard binary queries (also efficiently computable). In
words, the functionχu,a computes the mapping(x,y) 7→R as follows. Ifu is not a subsequence ofx′,
χu,a(x,y) = 0. Otherwise,χu,a checks whether the symbolσ in x following the leftmost embedding
of u is equal toa, and, ifx is a positive example (y=+1), returns 1 ifσ = a, or−1/(s−1) if σ 6= a.
If x is a negative example (y=−1) then the signs of the values returned are inverted.

Suppose for now that the lengthL = |ū| of the target shuffle ideal ¯u is known. Our learning
algorithm uses statistical queries to recover ¯u ∈ ΣL one symbol at a time. It starts with the empty
string u = λ. Having recoveredu = ū1, . . . , ūℓ, ℓ < L, we infer ūℓ+1 as follows. For eacha ∈ Σ,
the SQ oracle is called with the queryχu,a and a tolerance 0< τ < 1 to be specified later. Our key
technical observation is that the value ofEχu,a effectively selects the next symbol of ¯u:

Lemma 3

Eχu,a =

{

+2
sP(L,n,s), a= ūℓ+1

− 2
s(s−1)P(L,n,s), a 6= ūℓ+1
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where

P(L,n,s) =

(

n−1
L−1

)(

1
s

)L−1(

1−
1
s

)n−L

.

Proof Fix an unknown string ¯u of lengthL ≥ 1; by assumption, we have recovered inu= u1 . . .uℓ =
ū1 . . . ūℓ the firstℓ symbols of ¯u. Let u′ = ū0∞ be the extension of ¯u obtained by padding it on the
right with infinitely many 0 symbols (we assume 0∈ Σ).

Let X be a random variable representing the uniformly chosen sample stringx. Let T be the
largest value for whichu′1 . . .u

′
T is a subsequence ofX. Let ξ =1{T≥L} be the indicator for the event

thatX is a positive instance, i.e., that ¯u1 . . . ūL = u′1 . . .u
′
L is a subsequence ofX.

Observe thatT has a binomial distribution:

T ∼ Binom(n,1/s);

indeed, as we sweep acrossX, each positionXi has a 1/schance of being the next unused symbol of
u′. An immediate consequence of this fact is that Pr[ξ = 1] is exactly∑n

k=L

(n
k

)

(1/s)k(1−1/s)n−k.
Now fix ℓ < L and let Iℓ be defined as follows. Ifℓ = 0 then Iℓ = 0, and if u1 . . .uℓ is not

a subsequence ofX1 . . .Xn−1 then Iℓ = n− 1. Otherwise,Iℓ is the position ofuℓ in the leftmost
embedding ofu1 . . .uℓ in X1 . . .Xn−1. Then Iℓ+ 1 is the position ofσ as defined in (3.1), orn if
u1 . . .uℓ 6⊑ X1 . . .Xn−1.

We define two additional random variables,TA andTB. TA is the length of the longest prefix of
u′ that is a subsequence ofX with XIℓ+1 excluded:

TA = max
{

t : u′1 . . .u
′
t ⊑ X1 . . .XIℓXIℓ+2 . . .Xn

}

.

Intuitively, TB is the length of the longest prefix ofu′ with u′ℓ+1 excluded that is a subsequence ofX
with XIℓ+1 excluded. Formally, letv1v2 . . . be the sequenceu′1u′2 . . . with the elementu′ℓ+1 excluded,
that is,vi = u′i if i ≤ ℓ andvi = u′i+1 if i ≥ ℓ+1.

TB = max{t : v1 . . .vt ⊑ X1...XIℓXIℓ+2...Xn} .

Like T, TA andTB are binomially distributed, but now

TA,TB ∼ Binom(n−1,1/s).

The reason is that we always omit one position inX (the one followinguℓ if uℓ appears beforeXn or
Xn if it does not), and for each other position, there is still anindependent 1/s chance that it is the
next symbol inu′ (or u′ with u′ℓ+1 excluded.)

An important fact is thatXIℓ+1 is independent of the values ofTA andTB, though of courseTA and
TB are not independent of each other. This is not immediately obvious: whetherXIℓ+1 equalsu′ℓ+1
or not affects the interpretation of later symbols inX. However, the probability that each symbol
XIℓ+2 . . . is the next unused symbol inu′ (or v) is still an independent 1/s whetherXIℓ+1 consumes a
symbol ofu′ (or v) or not. The joint distribution ofTA andTB is not affected.

We now computeEχu,a by averaging over the choices in the joint distribution ofTA andTB. If
TA ≥ L, then ū is a subsequence ofX1 . . .XIℓXIℓ+2 . . .Xn, andX is a positive example (y = +1) no
matter howXIℓ+1 is chosen. In this case, each symbol inΣ contributes 1 to the conditional expected
value with probability 1/s and− 1

s−1 with probability s−1
s ; the net contribution is 0.
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If X is a positive example, then ¯u is a subsequence ofX and a leftmost embedding of ¯u in X
embedsu1 . . .uℓ in X1 . . .XIℓ and embedsuℓ+1 . . .uL in XIℓ+1 . . .Xn. Thus, no matter what symbol is
chosen forXIℓ+1, uℓ+2 . . .uL is a subsequence ofXIℓ+2 . . .Xn, andTB must be at leastL−1. Thus, if
TA ≥ L thenTB ≥ L−1. Moreover, ifTB < L−1, X must be a negative example (y=−1) no matter
how XIℓ+1 is chosen. In this case, the probability-(1/s) contribution of−1 is exactly offset by the
probability-

(

s−1
s

)

contribution of 1
s−1, and the conditional expected value is 0.

Thus the only case in which there may be a non-zero contribution to the expected value is when
TA < L andTB ≥ L−1, that is, when the choice ofXIℓ+1 may affect the label ofX. The exampleX
is positive if and only ifXIℓ+1 = ūℓ+1, which occurs ifσ = ūℓ+1. Thus the conditional expectation
for a= ūℓ+1 is

1·Pr[σ = ūℓ+1]+
1

s−1
·Pr[σ 6= ūℓ+1] =

1
s
+

1
s−1

·
s−1

s
= 2/s.

Fora 6= ūℓ+1, the conditional expectation is is− 2
s(s−1) . This can be computed directly by considering

cases, or by observing that the change to∑a∈Σ χu,a(x) = 0 always, and that alla 6= ūℓ+1 induce same
expectation by symmetry.

Finally we need to determine Pr[TA < L∧TB ≥ L−1]. We may write

Pr[TB ≥ L−1∧TA < L] = Pr[TB ≥ L−1]−Pr[TB ≥ L−1∧TA ≥ L]

BecauseTA ≥ L impliesTB ≥ L−1,

Pr[TB ≥ L−1∧TA ≥ L] = Pr[TA ≥ L],

and thus

Pr[TB ≥ L−1∧TA < L] = Pr[TB ≥ L−1]−Pr[TA ≥ L].

BecauseTA andTB are binomially distributed, Pr[TB ≥ L−1∧TA < L] is

n−1

∑
i=L−1

(

n−1
i

)

(

1
s

)i (
1− 1

s

)n−1−i
−

n−1

∑
i=L

(

n−1
i

)

(

1
s

)i (
1− 1

s

)n−1−i

which is
(

n−1
L−1

)

(

1
s

)L−1(
1− 1

s

)n−L
= P(L,n,s).

This concludes the proof of Lemma 3.

3.2 Specifying the Query Toleranceτ

The analysis in Lemma 3 implies that to identify the next symbol of ū ∈ ΣL it suffices to distin-
guish the two possible expected values ofEχu,a, which differ by(2/(s−1))P(L,n,s). If the query
tolerance is set to one third of this value, that is,

τ =
2

3(s−1)
P(L,n,s)

thensstatistical queries for each prefix of ¯u suffice to learn ¯u exactly.
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Theorem 4 When the length L of the target strinḡu is known,ū is exactly identifiable with O(Ls)
statistical queries at toleranceτ = 2

3(s−1)P(L,n,s).

In the above SQ algorithm there is no need for a precision parameterε because the learning is
exact, that is,ε = 0. Nor is there a need for a confidence parameterδ because each statistical query
is guaranteed to return an answer within the specified tolerance, in contrast to the PAC setting where
the parameterδ protects the learner against an “unlucky” sample.

However, if the relationship betweenn and L is such thatP(L,n,s) is very small, then the
toleranceτ will be very small, and this first SQ algorithm cannot be considered efficient. If we
allow an approximately correct hypothesis (ε > 0), we can modify the above algorithm to use a
polynomially bounded tolerance.

Theorem 5 When the length L of the target strinḡu is known,ū is approximately identifiable to
within ε > 0 with O(Ls) statistical queries at toleranceτ = 2ε/(9(s−1)n).

Proof We modify the SQ algorithm to make an initial statistical query with toleranceε/3 to estimate
Pr[ξ = 1], the probability thatx is a positive example. If the answer is≤ 2ε/3, then Pr[ξ = 1] ≤ ε
and the algorithm outputs a hypothesis that classifies all examples as negative. If the answer is
≥ 1−2ε/3, then Pr[ξ = 1]≥ 1−ε and the algorithm outputs a hypothesis that classifies all examples
as positive.

Otherwise, Pr[ξ = 1] and Pr[ξ = 0] are both at leastε/3, and the first SQ algorithm is used.
We now show thatP(L,n,s) ≥ ε/(3n), establishing the bound on the tolerance. LetQ(L,n,s) =
(n

L

)(

1
s

)L (
1− 1

s

)n−L
and note thatQ(L,n,s) = (n/Ls)P(L,n,s). If L ≤ n/s thenQ(L,n,s) is at least

as large as every term in the sum

Pr[ξ = 0] =
L−1

∑
k=0

(

n
k

)(

1
s

)k(

1−
1
s

)n−k

and thereforeQ(L,n,s) ≥ ε/(3L) andP(L,n,s) ≥ ε/(3n). If L > n/s thenQ(L,n,s) is at least as
large as every term in the sum

Pr[ξ = 1] =
n

∑
k=L

(

n
k

)(

1
s

)k(

1−
1
s

)n−k

and thereforeP(L,n,s)≥ Q(L,n,s) ≥ ε/(3n).

3.3 PAC Learning

The main result of this section is now obtained by a standard transformation of an SQ algorithm to
a PAC algorithm.

Theorem 6 The concept classC =
{X(u) : u∈ Σ≤n

}

is efficiently properly PAC learnable under
the uniform distribution.

Proof We assume that the algorithm receives as inputsn, L, ε andδ. Because there are onlyn+1
choices ofL, a standard method may be used to iterate through them. We simulate the modified SQ
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algorithm by drawing a sample of labeled examples and using them to estimate the answers to the
O(Ls) calls to the SQ oracle with queries at toleranceτ = 2ε/(9(s−1)n), as described by Kearns
(1998). According to the result of Kearns (1998, Theorem 1),

O

(

1
τ2 log

|C |

δ

)

= O

(

s2n2

ε2 (nlogs− logδ)
)

examples suffice to determine correct answers to all the queries at the desired tolerance, with prob-
ability at least 1−δ.

Our learning algorithm and analysis are rather strongly tied to the uniform distribution. If this
assumption is omitted, it might now happen that Pr[TB≥ L−1∧TA< L] is small even though positive
and negative examples are mostly balanced, or there might beintractable correlations betweenσ and
the values ofTA andTB. It seems that genuinely new ideas will be required to handlenonuniform
distributions.

4. Proper PAC Learning Under General Distributions Is Hard Unless NP=RP

This hardness result follows a standard paradigm (see Kearns and Vazirani, 1994). We show that
the problem of deciding whether a given labeled sample admits a consistent shuffle ideal is NP-
complete. A standard argument then shows that any proper PAClearner for shuffle ideals can
be efficiently manipulated into solving the decision problem, yielding an algorithm in RP. Thus,
assuming RP6= NP, there is no polynomial time algorithm that properly learns shuffle ideals.

Theorem 7 For any alphabet of size at least2, given two disjoint sets of strings S,T ⊂ Σ∗, the
problem of determining whether there exists a string u such that u⊑ x for each x∈ S and u6⊑ x for
each x∈ T is NP-complete.

We first prove a lemma that facilitates the representation ofn independent binary choices. Let
Σ = {0,1}, let n be a positive integer and defineAn to be the set of 2n binary strings described by
the regular expression

((00000+00100)11)n.

Define strings

v0 = 000100

v1 = 001000

d = 11

and letSn consist of the two strings

s0 = (v0d)n

s1 = (v1d)n.

9
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Define the strings

y0 = 00010

y1 = 01000

z= 0000

d0 = 1

and for each integeri such that 1≤ i ≤ n, define the strings

ti,0 = (v0d)i−1y0d(v0d)n−i

ti,1 = (v0d)i−1y1d(v0d)n−i

ti,2 = (v0d)i−1zd(v0d)n−i

ti,3 = (v0d)i−1v0d0(v0d)n−i .

The stringsti,0, ti,1 and ti,2 are obtained froms0 by replacing occurrencei of v0 by y0, y1, andz,
respectively. The stringti,3 is obtained froms0 by replacing occcurencei of d by d0. Let Tn consist
of all the stringsti, j for 1≤ i ≤ n and 0≤ j ≤ 3.

The following lemma shows that the set of strings consistentwith Sn andTn is precisely the 2n

strings inAn.

Lemma 8 Let Cn be the set of strings u such that u is a subsequence of both strings in Sn and not a
subsequence of any string in Tn. Then Cn = An.

Proof We first observe that for any positive integerm and any stringu∈ Am, the leftmost span ofu
in (v0d)m is (v0d)m itself, and the leftmost span ofu in (v1d)m is (v1d)m itself. Form= 1, we have
u= 0000011 oru= 0010011, whilev0d = 00010011 andv1d = 00100011, and the result holds by
inspection. Then a straightforward induction establishesthe result form> 1. Similarly, for any
stringu∈ Am, the rightmost span ofdu in d(v0d)m is d(v0d)m itself, and the rightmost span ofdu
in d(v1d)m is d(v1d)m itself. In the base case we havedu= 110000011 ordu= 110010011, while
dv0d= 1100010011 anddv1d= 1100100011, and the result holds by inspection. A straightforward
induction establishes the result form> 1.

Supposeu∈ An. Then
u= u1du2d · · ·und,

where eachui is either 00000 or 00100. Clearlyu⊑ s0 andu⊑ s1, because 00000 and 00100 are
subsequences ofv0 andv1.

Consider a stringti,0 ∈ Tn. Suppose thatu⊑ ti,0. Divide u into three parts,u= u′uiu′′, whereu′

is u1d · · ·ui−1d andu′′ = dui+1 · · ·und. The leftmost span ofu′ in ti,0 is (v0d)i−1, and the rightmost
span ofu′′ in ti,0 is d(v0d)n−i , which implies thatui ⊑ y0 by Lemma 1. Butui is either 00000 or
00100 andy0 is 00010, which is a contradiction. Sou is not a subsequence ofti,0. Similar arguments
show thatu is not a subsequence ofti,1 or ti,2.

Now supposeu ⊑ ti,3. We divideu into parts,u = u′uidui+1u′′, whereu′ = u1d · · ·ui−1d and
u′′ = dui+2 · · ·und. The leftmost span ofu′ in ti,3 is (v0d)i−1 and the rightmost span ofu′′ in ti,3 is
d(v0d)n−i−1. By Lemma 1, we must have

uidui+1 ⊑ v0d0v0.

10



ON THE LEARNABILITY OF SHUFFLE IDEALS

That is, at least one of the strings

000001100000,001001100000,000001100100,001001100100

must be a subsequence of 0001001000100, which is false, showing thatu is not a subsequence of
ti,3. Thusu is not a subsequence of any string inTn, andu∈Cn. ThusAn ⊆Cn.

For the reverse direction, supposeu ∈ Cn. We consider an embedding ofu in s0 and divideu
into segments

u= u1d1u2d2 · · ·undn,

where for eachi, ui ⊑ v0 anddi ⊑ d. If for any i we havedi ⊑ 1, thenu⊑ ti,3, a contradiction. Thus
di = 11= d for every i. Similarly, if ui is a subsequence ofy0, y1 or z, thenu is a subsequence
of ti,0, ti,1, or ti,2, respectively, so we know that eachui is a subsequence of the string 000100, but
not a subsequence of the strings 00010, 01000, or 0000. It is not difficult to check that the only
possibilities forui are

00000,00100,000100.

To eliminate the third possibility we use the fact thatu is a subsequence ofs1. Consider any string

w= w1dw2d · · ·wnd,

wherewi = 000100 and eachw j for j 6= i is either 00000 or 00100. We may dividew into parts
w= w′000100w′′ wherew′ = w1d · · ·wi−1d andw′′ = dwi+1d · · ·wnd. If w ⊑ s1, then the leftmost
span ofw′ in s1 is (v1d)i−1, and the rightmost span ofw′′ in s1 is d(v1d)n−i, which by Lemma 1
means that 000100 must be a subsequence ofv1 = 001000, a contradiction. Thus no suchw is a
subsequence ofs1, and we must haveui equal to 00000 or 00100 for alli, that is,u must be inAn.
ThusCn ⊆ An.

We now prove Theorem 7.
Proof To see that this decision problem is in NP, note that ifS is empty, then any string of length
longer than the longest string inT satisfies the necessary requirements, so that the answer in this
case is necessarily “yes.” IfS is nonempty, then no string longer than the shortest string in Scan be
a subsequence of every string inS, so we need only guess a stringw whose length is bounded by
that of the shortest string inSand check whetherw is a subsequence of every string inSand of no
string inT, which takes time proportional to the sum of the lengths of all the input strings (Lemma
2).

To see that this problem is complete in NP, we reduce satisfiability of CNF formulas to this
question. Given a CNF formulaφ over then variablesxi for 1 ≤ i ≤ n, we construct two sets of
binary stringsSandT such thatφ is satisfiable if and only if there exists a shuffle stringu that is a
subsequence of every string inSand of no string inT. The setS is just the two stringss0 ands1 in
the setSn. The setT is the strings in the setTn together with additional strings determined by the
clauses ofφ. By Lemma 8, the strings consistent withSn andTn are the 2n strings inAn.

We use eachu= u1du2d · · ·und in An to represent an assignment to thenvariablesxi by choosing
xi = 0 if ui is 00000 andxi = 1 if ui = 00100. We construct additional elements ofT based on the
clauses of the formulaφ to exclude any strings representing assignments that do notsatisfyφ. For
example, if clausej of φ is

(x3∨x6∨x17),

11
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we add a stringt j to T obtained froms0 by replacing occurrence 3 ofv0 by 00000, replacing
occurrence 6 ofv0 by 00100, and occurrence 17 ofv0 by 00100, where we have chosen 00000 or
00100 to falsify the corresponding literal. The strings inAn that are subsequences oft j are exactly
those that correspond to assignments that falsify clausej of φ, and addingt j to T eliminates these
strings from those consistent withSandT. By adding one stringt j to T for each clausej of φ, we
ensure that the only stringsu that are subsequences of both elements ofSand not subsequences of
any element ofT are exactly those elements ofAn that correspond to assignments that do not falsify
any clause ofφ. Thus, there exists at least one stringu that is a subsequence of both strings inSand
not a subsequence of any string inT if and only if φ is satisfiable.

Note thatS contains two strings of lengthO(n), Tn contains 4n strings of lengthO(n), andT
additionally contains one string of lengthO(n) for each clause ofφ, so the sizes ofS andT are
polynomial in the size ofφ. This completes the proof of Theorem 7.

5. Cryptographic Limitations on PAC Learning Shuffle Ideals

In this section we show that the problem of PAC learning any class of constant-depth, polynomial-
size threshold formulas is efficiently reducible to the problem of PAC learning shuffle ideals. Be-
cause for some constant depth, the class of polynomial-sizethreshold formulas of that depth are
capable of computing iterated product, the results of Kearns and Valiant (1994) imply that a polyno-
mial time PAC algorithm to learn them would imply polynomialtime algorithms for certain funda-
mental problems in cryptography, namely, inverting RSA encryption, factoring Blum integers, and
testing quadratic residuosity. Thus, the class of shuffle ideals faces the same cryptographic limi-
tations on PAC learnability as demonstrated by Kearns and Valiant for the class of general regular
languages represented by deterministic finite automata.

A threshold functionis a Boolean function withm inputs and a thresholdt. Its output is 1 if at
leastt of its inputs are 1 and 0 otherwise. Thus, an OR ofm inputs is equivalent to a threshold func-
tion with threshold 1, and an AND ofm inputs is equivalent to a threshold function with threshold
m. There arem+2 different threshold functions ofm inputs, corresponding tot = 0,1, . . . ,m+1.
The thresholdt = 0 computes the constant function 1, while the thresholdt = m+1 computes the
constant function 0.

Given an integerm> 1, we define the classT(n,m,d) of threshold formulas over the variables
Vn = {x1,x2, . . . ,xn} of fan-in exactlym and depthd by induction ond as follows. The formulas of
depthd = 0 are the two constants 0 and 1 and the 2n literals xi andxi . For d > 0, the formulas of
depthd consist of a threshold function withm inputs applied to a sequence ofm formulas of depth
d− 1. Note that a threshold function ofm inputs can be used to compute a threshold function of
fewer inputs by insuring that the excess inputs are the constant function 0.

We can picture the elements ofT(n,m,d) as ordered fullm-ary trees of depthd whose internal
nodes are labeled by threshold functions, and whose leaves are labeled by constants or literals.
Thus, the total number of occurrences of constants or literals in a threshold formula of fan-inmand
depthd is O(md). If d is a fixed constant andm is bounded by a polynomial inn, the total size of
such a formula is bounded by a polynomial inn. The same is true ifm is a fixed constant andd
is bounded byO(logn); in this case, the formulas compute functions in the class NC1 of constant
fan-in, logarithmic depth Boolean circuits.

12
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We now describe a reduction parameterized byd that maps each threshold formulaf in T(n,m,d)
to a shuffle stringrd( f ), and each assignmenta to the variablesVn to an assignment stringsd(a),
such that the assignmenta satisfiesf if and only if the shuffle stringrd( f ) is a subsequence of the
assignment stringsd(a). The string alphabet consists of the symbols 0 and 1 and a set of d+ 1
delimiters: #0,#1, . . . ,#d.

The base case isd = 0, wheref is a single constant 0 or 1 or a single literalxi or xi . In this case,
the shuffle string is

r0( f ) = y1#0y2#0 . . .yn#0,

wherey j is defined as follows. Iff = 0 theny j = 01 for all j, and if f = 1 theny j = λ for all j. If
f = xi theny j = λ for all j 6= i andyi = 1, while if f = xi theny j = λ for all j 6= i andyi = 0.

If the assignmenta is given by a binary stringa1a2 . . .an, indicating thatxi is assigned the value
ai , then the string representing the assignment is just

s0(a) = a1#0a2#0 . . .an#0.

It is clear thatr0( f ) is a subsequence ofs0(a) if and only if then occurrences of #0 in each string
are matched, andy j is a subsequence ofa j for all j = 1,2, . . . ,n. For f = 0 we havey j = 01 for all
j, so this holds for noa. For f = 1 we havey j = λ for all j, and this holds for everya. If f is a
literal, then this holds if and only ifyi = ai , that is, if and only ifa satisfiesf . Thus, whenf is a
constant or a literal,r0( f ) is a subsequence ofs0(a) if and only if a satisfiesf .

In addition to definining the shuffle string and the assignment strings at each level, we also
define a slack string. For level 0, the slack stringz0 is defined as follows.

z0 = (01#0)
n,

That is,z0 consists ofn repetitions of the string 01#0. For leveld, the slack string is designed to
ensure thatrd( f ) is a subsequence ofzd for any f ∈ T(n,m,d); this clearly holds at leveld = 0.

For the inductive cased > 0, we assume that the construction has been defined ford−1 using
symbols 0, 1, and delimiters #0, . . . ,#d−1. Thus the leveld delimiter, #d, has not yet been used.
Supposef is a depthd threshold formula fromT(n,m,d), that is,

f = θ( f1, f2, . . . , fm),

where eachfi is a depthd−1 threshold formula andθ is a threshold function with thresholdt. We
define the shuffle string

rd( f ) = u1u1u2u2 · · ·umum(#d)
2t ,

where for eachi = 1,2, . . . ,m,
ui = rd−1( fi)#d.

That is,rd( f ) consists of two copies of the leveld−1 code for fi , with each copy followed by the
delimiter #d, for i = 1,2, . . . ,m, followed byt pairs of the delimiter #d. Note thatrd( f ) may contain
up to 4m+2 copies of #d.

Given an assignmenta to the variablesVn, we define a leveld assignment string

sd(a) = v2m,

where
v= sd−1(a)#dzd−1#d.
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That is,sd(a) is 2m copies of the stringv consisting of the leveld−1 code fora, followed by #d,
followed by the leveld−1 slack string, followed by #d. Note thatsd(a) contains exactly 4m copies
of #d.

Finally, the leveld slack string is defined as follows.

zd = (zd−1#d)
4m+2.

A straightforward induction shows that for any threshold formula f in T(n,m,d), rd( f ) is a subse-
quence ofzd, and for any assignmenta to the variables,sd(a) is also a subsequence ofzd.

Lemma 9 For all threshold formulas f in T(n,m,d) and assignments a to the variables in Vn, a
satisfies f if and only if rd( f ) is a subsequence of sd(a).

Proof This is proved by induction ond. For d = 0, the basis construction showed that for all
constants or literalsf and assignmentsa, a satisfiesf if and only if r0( f ) is a subsequence ofs0(a).

Inductively assume that the construction works ford− 1. Supposef is a depthd threshold
formula, that is,

f = θ( f1, f2, . . . , fm),

where eachfi is a depthd−1 threshold formula andθ is a threshold function with thresholdt. For
any indexi and any assignmenta let

ui = rd−1( fi)#d

and
v= sd−1(a)#dzd−1#d.

Becauserd−1( fi) is a subsequence of the slack stringzd−1, uiui is a subsequence ofvv. Also, uiui is
a subsequence ofv if and only if rd−1( fi) is a subsequence ofsd−1(a), which holds if and only ifa
satisfiesfi , by the inductive assumption. Ifuiui is not a subsequence ofv, then a leftmost embedding
of uiui in vv must match the first #d in uiui to the second #d in vv and the second #d in uiui to the
fourth #d in vv, thereby “consuming” all ofvv for the embedding.

Supposea satifies f . Becauseθ is a threshold function with thresholdt, there must be a setT
of at leastt indicesi such thata satisfiesfi . By the inductive assumption, this means thatrd−1( fi)
is a subsequence ofsd−1(a) for eachi ∈ T. For eachi ∈ T, uiui is a subsequence ofv. For i 6∈ T,
uiui is a subsequence ofvv but not ofv. Thus we can find a leftmost embedding ofrd( f ) in sd(a)
by consuming one copy ofv from sd(a) for eachi ∈ T and two copies for eachi 6∈ T, using at most
2m− t copies, and leaving at leastt copies, which allows us to embed the trailing sequence of 2t
delimiters #d in the remaining copies ofv. Thusrd( f ) is a subsequence ofsd(a).

Conversely, suppose thatrd( f ) is a subsequence ofsd(a), and consider a leftmost embedding.
Considering the segmentsuiui of rd( f ) from left to right, we see that the leftmost embedding con-
sumes one copy ofv if a satisfiesfi and two copies ifa does not satisfyfi . Thus, if T is the set
of indicesi such thata satisfiesfi, then after embedding allm such segments, 2m−|T| copies ofv
are consumed fromsd(a), leaving|T| copies. Because the trailing 2t occurrences of #d in rd( f ) are
matched in the remaining portion ofsd(a), we must have 2|T| ≥ 2t, and thereforea satisfiesfi for
at leastt indicesi, that is,a satisfiesf .

How long are the stringsrd( f ) and sd(a)? Each is a subsequence ofzd, and form≥ 2, the
length ofzd is bounded by(10m)d(3n). This is polynomial inn if either d is a fixed constant andm
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is polynomial inn, or if m is a fixed constant andd = O(logn). In either case, the mapping froma
to sd(a) is computable in polynomial time, and we have the following results.

The first result assumes a polynomial time algorithm to learnshuffle ideals over some fixed
alphabet.

Theorem 10 Suppose for some positive integer d, there exists a polynomial time algorithm to PAC
learn shuffle ideals over an alphabet of size d+ 2. Then for any polynomial p(n), there exists a
polynomial time algorithm to PAC learn the threshold formulas in T(n, p(n),d).

The second result assumes a polynomial time algorithm to learn shuffle ideals over an arbitrary
finite alphabet, where the dependence on the alphabet size must be at most exponential.

Theorem 11 Suppose there exists an algorithm to PAC learn shuffle idealsover arbitrary finite
alphabets that runs in time polynomial in n and Cs, where n is a bound on the length of examples,
s is the alphabet size and C is a fixed constant. Then for any constant K, there exists a polynomial
time algorithm to PAC learn the threshold formulas in T(n,2,K logn).

5.1 Example of the Construction ofrd( f ) and sd(a)

We illustrate the construction for the formula

f = (x1∨x2)∧ (x1∧x3)

from T(3,2,2) and the assignmenta= 001. To avoid subscripted delimiters, let #, $, and % stand
for #0, #1 and #2 respectively. For the base case we have the following.

r0(x1) = 1###

r0(x1) = 0###

r0(x2) = #0##

r0(x3) = ##1#

z0 = 01#01#01#

The two subformulas off have thresholds of 1 and 2 respectively.

r1(x1∨x2) = 1###$1###$#0##$#0##$$$

r1(x1∧x3) = 0###$0###$##1#$##1#$$$$$

z1 = (01#01#01#$)10

For f the threshold is 2.

r2( f ) = ((1###$)2(#0##$)2)$$%)2((0###$)2(##1#$)2$$$$%)2%%%%

z2 = ((01#01#01#$)10%)10

The assignment strings for the assigmenta= 001 are as follows.

s0(a) = 0#0#1#

s1(a) = (0#0#1#$01#01#01#$)4

s2(a) = ((0#0#1#$01#01#01#$)4%(01#01#01#$)10%)4

Assignmenta satisfiesf andr2( f ) is a subsequence ofs2(a).
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6. Discussion

We have shown that the class of shuffle ideals is not efficiently properly PAC learnable if RP6=
NP, and is not efficiently improperly PAC learnable under certain cryptographic assumptions. On
the other hand, even with classification noise, efficient proper PAC learning of shuffle ideals is
possible under the uniform distribution. One technical question that remains is whether the results
in Section 5 can be proved for an alphabet of constant size (independent ofd.) Another is whether
PAC learning shuffle ideals is as hard as PAC learning deterministic finite acceptors. Much remains
to be understood about the learnability of subclasses of theregular languages.
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