Trojan Horse Resistant
Discretionary Access Control

Ninghui Li, Ziging Mao, Hong Chen (Purdue University) Xuxian Jiang (GMU)

DAC: the dominant access control approach in modern OS
® Vulnerable to Trojan horse and vulnerabllity exploitation
® But easy and intuitive to use; users are familiar with it

= MAC: more secure, but difficult to configure and often break existing applications
® Can we have the best of both worlds? Yes!

® Consider UNIX DAC, which has two components
® discretionary policy specification: (e.g., rwx permission bits)
® enforcement: (e.qg., effective user id):

® Source of UNIX DAC’s weakness: unable to tell the true origin(s) of a request

= Because UNIX DAC enforcement tries to identify a single principle behind any request,
whereas In practice multiple principals can affect a request.

® Our Solution: IFEDAC: Information Flow Enhanced DAC
® Keep DAC's discretionary policy specification
® Fix DAC’s enforcement
® maintains a set of principals for each request
" |Introduces an additional entity, net, representing remote attacker

Integrity Tracking Rules:
. access
A File % | A Process Subject Integrity Tracking

After creating the first subject s int(sg) «— T
!

) «— int(s)

«— int(s) U int(o)

)
) «— int(s) U {net}
) ¢
) —

After s creates s’ int

Who are authorized? Whose intension? After s executes o int

(
{
(
After s reads from the network int(
{
{
{

After s reads from o int nt(s) U int(o)

int(s) U {u}

1) «— int(sy1) U int(s2)

Integrity Level (int):
A set of entities who may

control the process
(tracked by information flow)

After s logs in a non-administrator u int

Protection Class (pc):

A set of authorized entities
(inferred from DAC policy)

S
8
S
g
]
8
<

After sy receives [PC data from s9 int

Object Integrity Tracking

When o 1s created by s int(o) «— int(s)
When int(o) is not previously assigned | int(o) «— wpc(o)

Allowed If "th_: pC After o is written by s int(o) «— int(s) L int(o)

« Protection class may be different from that inferred from DAC *A Usage Case:
e can be explicitly set by users « John launches ThunderBird (T); T.IL = {john}

« T communicates with remote mail server; T.IL = {john, net}
« File integrity level can be manually upgraded by users * T needs to access the working directory whose wpc = {john}
» must satisfy certain conditions e Grant a special privilege (~/.thunderbird, write) to T’s binary
« John wants to save an email attachment to local file system
*Program Exceptions « John has an Internet Directory ~/download
« RAP: maintain IL when receiving network traffic * The directory’s wpc is explicit assigned as {john, net}
e trusted to process network inputs COrrecﬂy « John saves the emall attachment A to ~/download
« LSP: maintain IL when reading file and receiving IPC data * A.IL = {john, net} |
« trusted to process file and IPC inputs correctly » John opens A using a pdt viewer V
« SP: access files without satisfying the protection rules * V.IL = {john, net}, after V reads A
« trusted to process inputs correctly, or e Alis a mal-formed file and exploits a vulnerability in V

« attacker is unable to inject all malicious code into the AS * V cannot access system files and john’s normal files
« John saves another email attachment B ~/download
«Security Assumptions * B.IL = {john, net}
Programs that are explicitly identified as benign are benign « John wants to install B to the system, so executes B as BP
« By specifying initial integrity level and integrity upgrading P.IL = {john, net}
* Programs that have exceptions are correct P cannot touch the system files, Iinstallation failed
P cannot launch damage if B is a Trojan horse

« Implementation John really trusts B and wants to install it
e Implemented using LSM «John login as an administrator
» Use extended attributes to store file’s int and pc «John explicitly upgrades B.IL to top
«John executes B as BP’
*BP’.IL = top, Installation succeed

. . . NSF Cyber Trust Principal Investigators Meeting P
National Science Foundation March 16-18. 2008 URDUE
New Haven, CT O NIV E.] -

